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Abstract—In recent times, there is a paradigm shift to cloud
services that offer on-demand computer system resources,
especially data storage and computing power. The main reason
for the shift is that it removes the user’s active participation
to perform computationally intensive tasks. However, current
cloud-based services incur high user latency as being deployed
very far from the user. One alternative solution to the traditional
cloud-based paradigm is drone-based edge computing. In drone
edge computing, drones are located near the user and deployed
to provide data offload services. There have been many works
that have addressed the issue of efficient task assignment in edge
devices. This paper presents a concrete analytical performance
model for drone cloudlet networks and factors that influence
the service response time to the user. The results can be helpful
for network administrators to make the current edge computing
paradigm faster, more robust and, cost-effective.

Index Terms—UAVs, Security, cloudlets.

I. INTRODUCTION

With the surge of innovative technology solutions, mobile
devices have no longer remained just communication de-
vices. Instead, they have evolved to become much more
innovative, intelligent, dynamic, and functional. Mobile
devices are being viewed as a viable replacement for com-
puters [1]. Whatever task could be possible on the computer
is being done by smartphones. Smartphones have provided
ease of usage, compactness, effectiveness to end-users. It
is expected that they will accomplish any task which a
computer can do, whether computation, imaging, music
player, health monitoring, and energy analytics [2–4].

Each coin has a flip side. Although smartphones are
much easier to handle, their functionality is constrained
by the computational resources available. Mobile phones
generally have small battery backup, small computational
processors. So performing a high-end task on the phone
can cause increased power consumption, thus reducing
the battery backup capacity [5]. With internet technology
merging rapidly, many service providers are looking to
leverage software to use cloud services. Cloud computing
has changed the world tremendously. Since its inception
in 2005, cloud computing has had a significant impact
on the way we live, work, and learn [6]. Cloud services
are a connection of hardware resource centers that have
high computational devices connected. Mobile devices can
offload their task to cloud servers. Cloud servers compute
the tasks and return the answer to the end-user [7].

Fig. 1: System Model

However, these cloud servers face an issue of significant
user latency. Cloud stations are located very far from the
end-user. Since most mobile applications have a hard tim-
ing deadline, higher communication latency with the cloud
makes the result useless. Many researchers have been work-
ing on edge computing solutions [8–10]. The edge com-
puting solutions have small computation devices located
near to the user. These edge devices are interconnected
to each other to distribute offloading tasks from users
adequately. Edge devices provide dual benefits, as they are
closer to users with minimal propagation delay than cloud-
based services. Edge-based services are much cheaper and
do not require extra infrastructure, thus providing win-win
solutions to stakeholders and users.

With the coming of unmanned aerial vehicles (UAVs) or
drones, the edge-based computing paradigm has further
evolved, where the edge devices are located near the user
and mobile. This allows the stakeholder to distribute its
resources to cater to the need of end-users effectively. In the
coming days, unmanned aerial vehicles and drone-based
solutions can also eliminate the need for the internet. All
the devices are gradually becoming smarter, whether smart-
watches [11], smart washing machines [12], or smart TV. All
these have one thing in common, which is computation and
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Notation Meaning
R Response Time
Sc Service Rate of UAV in zone c
Sk Service Rate of UAV in zone k
λc Arrival rate of requests in zone c
λk Arrival rate of requests in zone k
Qc Queue length with class c requests
Qk Queue length with class k requests
ρc Load of task in zone c
ρk Load of task in zone k
ρ Sum of all ρc

Smax Maximum Service rate of UAV
dist(x) Distance of mobile device from UAV
γ(x) File size of mobile device at distance x
α,β Constants

TABLE I: Notation Table

communication. Since the feasibility of the internet is not
possible all the time. Researchers are visioning UAV-based
edge servers as a solution to this issue. UAV-based edge
servers can be located near IoT devices, where devices can
offload the task to edge devices using near communication
technologies such as Bluetooth and wifi.

In this paper, we perform a performance analysis of task
offloading among UAV edge servers. We design a testbed
using mobile devices and edge servers and evaluate the user
latency experience by varying factors such as offloading
file size, the distance of the user from the server, current
number of requests, etc. To the best of our knowledge,
this work has not been previously analyzed. Understanding
these parameters will have network administrators improve
the edge computing services’ performance and provide
users with a better service experience.

The overview of the paper is as follows. Section II is the
system description. Section III discusses the proposed load
balancing and task assignment in the UAV edge network.
In section IV, we discuss our hardware testbed model.
Observations and performance analysis are presented in
Section V. Section VI summarises the cumulative factors
that affect the user experience. Finally, the Conclusion is
presented in Section VII.

II. SYSTEM DESCRIPTION

Fig. 1 depicts the system model that is being considered.
In a region, a cluster of UAVs is deployed to serve the end
mobile users. All the UAVs are connected via a wireless
network. There exists a central UAV manager in the network.
Different mobile devices connect to different UAV edge
servers which are closest to it. The connected UAV sends
the task to the UAV manager. UAV manager maintains the
status of all the UAVs in terms of the number of resources
available, number of requests pending on UAV, network
congestion, request file size, and user distance. Based on

Fig. 2: Zone formation based on service rate variation

all the parameters, the UAV manager allocates the task to
the UAV, resulting in minimum response time to the UAV.
All UAVs are considered to have the same computational
resources. The notations used in this paper are presented
in Table 1.

III. PROPOSED LOAD BALANCING

This section discusses the strategy used by the UAV
manager to offload the task to the UAV, which results
in minimum response time. For formulating the response
time, we consider a scenario where task requests arrive for
UAV following Poisson distribution. Poisson distribution is a
very close approximation to the distribution seen in a real-
life scenario. UAV servers follow an M/M/1-PS(processor
sharing) queue, model. For each UAV, we consider it as the
base server (BS). Each of the UAVs can offer up to Smax

service rate, which is determined by its hardware setup. It
is to be noted that the effective service rate reduces as the
distance between the UAV and the mobile device increases.
The service rate perceived by the user at a distance x from
the UAV server is given as:

s(x) = Smax

1+β(di s(x))α
(1)

The distance between the mobile device at location x
and the UAV is di s(x). α and β parameters enable the
service rate to be adjusted to meet a wide range of network
scenarios. So, for a single UAV, we can divide the service rate
experience by user as a function of distance by dividing the
region into zones, as shown in Fig. 2. The service rate in
a zone remains almost constant, which is proved part of
observation 1 in our hardware testbed. We consider each
zone a separate class of requests, as users’ same requests in
different zones are treated differently. Using queuing theory
[13], we can write response time for task in k th zone as:
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Rk =∑
c

Ac Sc +Sk

Using PASTA property of Poisson Arrival [14]

Rk =∑
c

Qc Sc +Sk

Using Little’s Law [15]

Rk =∑
c
λc Rc Sc +Sk

λk Rk = λk

∑
c
λc Rc Sc +λk Sk

Qk = λk

∑
c

Rcρc +ρk

= λk Rk

∑
c

Rc

Rk
ρc +ρk

= Qk

∑
c

Rc

Rk
ρc +ρk

We use the fact that response time is almost similar in
all the zones as proved in [16].

Rc

Rk
≈ 1 (2)

Qk ≈ Qk

∑
c
ρc +ρk .

= Qkρ+ρk

Qk (1−ρ) ≈ ρk

Qk ≈ ρk

1−ρ

So the latency experienced by UAV is sum of all the
Queues of different classes. We term it as latency indicator
of the UAV, L , which is given by:

L =∑
k

Qk

= ρ

1−ρ
.

Here, the load at the UAV serving its request (which
represents the queuing delay experienced by the mobile
device request) is given by ρ, which is UAV server utilization.
It depends on file size, arrival rate, service rate, etc.

ρ=
∫
R

γ(x)

Sx
d x, 0 ≤ ρ≤ 1 (3)

In here, γ(x) is file size by mobile device located at
location x and Sx is service rate at location x. The UAV
manager assigns the task to the UAV with least L . When-

Fig. 3: Concentric zones of service formed during testbed.
Each zone has almost same service rate

ever a request comes, it evaluates L for each UAV server
and allocates the task where L is minimum. This takes into
account file size, the distance of user, current load on the
server.

IV. HARDWARE TESTBED

In this section, we describe our testbed model designed
to analyze the performance metric of the parameters. Rasp-
berry pi3 was used as onboard computers in UAVs. Mobile
devices could connect to UAV via a wireless connection.
Apple Macbook Air was used as the central UAV manager
that is connected to the UAV network. All the requests for
task offloading arrive from the UAV to the central manager,
who then decides where to offload the task. The system’s
parameters were measured by sending files from a server
to a client and back. The server was placed in the middle
of a circular park while the client’s location was varied in
circular peripheries of varying radii.

We considered two different UAV topologies with 10 and
16 UAVs, respectively, to evaluate the proposed scheme’s
performance. The primary aim of having two different
topologies is to test the performance of similar loads on
networks of different sizes. Two types of UAVs are taken into
consideration, one with a maximum service rate of 6MBps
and the other with a maximum service rate of 12MBps.
The latency indicator will thus be a qualitative measure,
expressing a relative value of the latency. Latency indicator
hides the complexity of inference which is experienced in
a real-life scenario. However, at the same time gives a good
idea of how the actual latency function looks like.

V. OBSERVATIONS AND DISCUSSIONS

In this section, we discuss vital observations from the
execution of the hardware testbed.

OBSERVATION 1: The assumption that service rate vari-
ation can be modeled as different rings is validated herein.
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Fig. 4: Variation of Service rate vs Distance of User

Fig. 5: Variation of Alpha for different file sizes

The service rate rather than linear or quadratic function
follows a staircase pattern. Hence the service rate, rather
than changing with distance, can be seen as multiple rings
where the service rate remains almost the same while the
user moves inside the ring. As depicted in Fig. 3, the time for
completing the interaction between the user and the client
was noted. We generated five rings. The closest distance
between the server and the client was 2 meters, while the
farthest distance was 34 meters.

OBSERVATION 2: The difference of radius of rings is not
constant, as is the assumption used in most research works.
Instead, the radius difference increases as we move away
from the server, as shown in Fig. 3 and Fig. 4. In Fig. 4, for
hardware values, we found the values matched simulation
values within the error bound of 0.2.

OBSERVATION 3: Figure 3 shows the difference in service
rate generated by simulation by varying alpha values and

Fig. 6: Variation of Latency Indicator vs file size

our hardware testbed benchmark. For the hardware testbed,
we created a 95% confidence interval of variation of service
rate with distance. The red line shows the actual output,
whereas the black line shows possible variation in service
rate due to changes in external factors. We can observe from
Fig. 4 that hardware testbed/hardware simulation is closer
to the analytical model with α = 1. So it is expected that
the model to have service rate variation linear rather than
quadratic.

OBSERVATION 4: Alpha and beta decide how is the
impact of distance on the service rate received by the user.
In fig. 5, we see that it is challenging to estimate alpha using
experimentation for small file sizes. Alpha values oscillate
as the distance is varied. But gradually, when we increase
the file size, alpha values converge. A small size file is quite
quickly downloaded, and the impact of distance cannot be
correctly observed. As we increase the file size, it increases
the total response time for the user.

OBSERVATION 5: The network’s quality in terms of the
latency associated with the distance of the requests from
the UAV is amassed within the parameter α. A lower
effective service rate at the request’s location provided by
the UAV would signify that the value of α is high. With
experimentation conducted in an open environment, we
found the alpha values to converge closer to 1.1 (as shown
in fig. 5). This matches our observation in Fig. 4, where we
expected alpha to be closer to 1 rather than 2.

OBSERVATION 6: The latency indicator sees a quadratic
increase with an increase in the file size (in fig. 6). This
is due to a higher load on the UAVs. The difference
between the 10 and 16 UAV networks is a difference of
transformation. However, in both cases, curvature remains
the same. This sudden increment in latency indicator is
due to the crowding of requests at each UAV which are not
being catered because of the low service capability.
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Fig. 7: Variation of Latency Indicator vs Distance

Fig. 8: Observing the effect of all parameters simultaneously.

OBSERVATION 7: Contrary to expectation, the latency
indicator sees a linear and slow increase with the distance
(fig. 8). This is due to users being uniformly distributed over
an area. Changing the location of a single mobile device by
a distance does not drastically affect UAV’s latency indicator.

VI. OPTIMISING PARAMETERS

As observed from Fig. 8, the Latency indicator increases
at the maximum rate, increasing the request rate per user.
An increase in the number of users on the server also
increases the latency sharply. However, file sizes per request
and distance between the cloudlet and the user have a
more negligible impact on the latency. While distance has
a higher latency value in the early part of the plot, it is
quickly overtaken by other parameters. Thus, it is advised to
keep the request rate to a low value for a network designer,
which larger size of request packets can compensate. This
will keep the overall latency generally low.

VII. CONCLUSION

This paper presents an analytical performance model
for UAV edge cloudlet networks. Edge devices are located

near to the user and are deployed to provide data offload
services to users. The paper presents a way through which
the latency is calculated using experimental results and
theoretical formulae. Simulations were performed, where
the distance, file size, number of cloudlets, number of users,
and request per user was varied, and its effects on the
latency were observed. The results can be helpful for net-
work administrators to make the current edge computing
paradigm faster, more robust and, cost-effective.
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