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Abstract— Contact tracing remains essential in mitigating the spread of pan-
demics (including COVID-19). Specifically, backward contact tracing helps find
superspreaders and hidden chains of transmission from asymptomatically
infected users. However, most literature proposing contact tracing frameworks
and apps deployed by various countries do not attempt backward contact
tracing. In this work, we present a novel approach for Bidirectional contact
tracing. The proposed approach works using Bluetooth low-energy sensors
that detect the presence of users in a vicinity and inform a central backend
server of user presence. By fixing BLE-S in buildings, the proposed framework
can trace the contacts resulting from contamination of a location (indirect
contacts). We present two algorithms using which the proposed framework
can trace forward and backward contacts. Using a simulation, we also track
the spread of infection among different ‘Generations’ of the infected and the
impact of backward tracing on preventing the spread across generations.
We observe the effect of critical epidemiological parameters such as the
reproduction number (R) and the overdispersion parameter (k) specifically on
backward contact tracing efficiency.

Index Terms— Global Pandemic, COVID-19, Indirect Contact Tracing, Fomite
Transfer, Bluetooth Low Energy (BLE), Backward Contact Tracing

I. INTRODUCTION

Contact Tracing (CT), as a public health tool, can identify
individuals who have been in contact with users infected
with communicable diseases (including COVID-19) in the
recent past. Traditional contact tracing, such as manual efforts,
depends on an individual’s memory and willingness to reveal
their location and contact information. In contrast, Digital CT
has the potential to be more effective in the early detection
of infectious cases and thus allows for timely medical in-
tervention. It can also help identify individuals who infect a
large group of people, commonly known as superspreaders.
Since smartphones are already prevalent today, several digital
contact tracing applications have been developed using them.
Some works use GPS communication for contact tracing
(India’s Aarogya Setu App), while others use Wi-Fi for user
localization and contact tracing [1]. However, due to its low
energy requirements, BLE or Bluetooth Low Energy has been
a popular technology for smartphone-based contact tracing in
many previous works [2], [3]. The most common approach for
the same is the broadcast of BLE packets using apps installed
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on smartphones to other app users in the vicinity and thus
register contacts.

Most of the literature proposing contact tracing frameworks
and the contact tracing apps deployed by various countries
focuses on forward contact tracing and ignoring tracing the
contact source. Backward Contact Tracing traces the asymp-
tomatic or undetected transmission sources for a given user
and thus finds additional chains of transmission originating
from them. Due to the overdispersive nature of diseases like
COVID-19, users traced by backward CT are also more
likely to be superspreaders of disease, boosting the overall
infected detection rate. Overdispersion is explained in Section
V. Another issue in many contact tracing apps is user privacy
[4]. Also, these approaches suffer from lower contact detection
rates due to a lack of control over the BLE range. Continuous
broadcasting of Bluetooth packets raises issues of rapid battery
drain. Due to such reasons, most of the contact tracing attempts
in the recent past have failed to reach the minimum app
adoption rate required to make them effective [5], [6].

This work proposes a novel contact tracing approach for
forward and backward contact tracing using Bluetooth low
energy sensors or BLE-S. The proposed framework can detect
indirect contacts like transmission by touching surfaces where
the contaminants can stay from minutes to several hours [7].
We specifically target environments like college campuses,
corporate campuses, prisons, etc., where app usage can be
incentivized or made mandatory. This ensures the required
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TABLE I
NOTATIONS TABLE

NOTATION MEANING

CDC Center for Disease Control and Prevention
ξ Time duration threshold for close contact (in minutes)
δ Distance threshold for close contact
Tm Threshold for contamination
Tw Duration of contamination
θ Contact Duration
θD Direct Contact Duration
θI Indirect Contact Duration
X Set of all known infected users
BLE-S Bluetooth Low Energy Sensors
BS Backend Server
BUID BLE-S Unique Identifier
B BLE Sensor ID example ID
TD Token Database
IDT Infected Indirect Dummy Token
IUD Infected User Database
HUD Healthy User Database
TS Timestamp
UUID User Unique Identifier
U User example ID
Y Infected User
PI Pre-infection period of index user
f No. of infectees of an infected user
p(f) Probability Distribution Function of f
Q Infected Generation
R Reproduction number
k Overdispersion parameter
ρ Coefficient of variation of f
E(x) Expected value of variable x
w Relative reduction in R of Q2 due to quarantine
s Accuracy of backward contact tracing
α Accuracy of forward contact tracing (direct & indirect)
t Accuracy and usage probability of COVID test
Π No. of Q3 cases prevented by contact tracing
Ψ Proportion of Q3 cases prevented

minimum adoption rate. The BLE-S detects the presence of
participating nearby user phones, and the user devices send
BLE tokens to the BLE-S. The tokens are transmitted from
the BLE-S to a Backend Server (BS). The BS uses the
token information to perform forward and backward tracing
of contacts of both types - direct (transmission via touching,
conversing directly with infected) and indirect (transmission
via contaminated surfaces - fomites or viral particles in air).
The contributions of our work can be summarized as -

• Proposing novel technique for bidirectional contact trac-
ing using Bluetooth beacon devices.

• Proposing two algorithms for forward and backward con-
tact tracing.

• Evaluating the impact on preventing the spread of infec-
tious diseases like COVID-19 by applying an analytical
model to the proposed contact tracing technique.

• Numerical results are given to illustrate the impact of the
proposed technique on the prevention of disease in later
generations and compare with two existing CT works.

II. RELATED WORK

The work in [8] lists and compares several works in contact
tracing. In [9], the authors propose EPIC, a framework that
uses received signal strength indicators (RSSI) values of Wi-
Fi and Bluetooth from neighboring wireless devices. Further,

the received data is encrypted and sent to the server for
contact tracing. They perform privacy-aware contact tracing
as the user data is processed in the anonymized domain to
obtain the contact information. Since it relies on RSSI values,
the technique requires regular calibration as the accuracy is
environment dependent.

In [10], the authors propose PC3T, which uses wearable-
based proximity detection and machine learning for contact
tracing. Their technique has high accuracy, but they do not
consider any physical obstacles in their experiments. This
leads to inaccuracies in real-world results due to complex
signal propagation in indoor environments. In [11], the authors
propose LTESafe, where the CSI data from LTE networks is
used to estimate the distance between user devices. The CSI
data cannot detect altitude, which may lead to false positives
with people on different floors. We compare the results of
the proposed work with the above two works - LTESafe [11]
and PC3T [10] in Section VI. In [4], the authors designed a
device that is fixed in public areas for detecting contacts but
can not detect indirect contacts. None of the above techniques
take indirect contacts into account as opposed to the proposed
technique. However, according to [12], indirect contacts such
as fomite transfer may have contributed to 25% of the COVID-
related deaths in the UK during the post-lockdown period in
2020. In [13], the authors use absolute locations of the user via
GPS and thus detect indirect contacts. However, GPS suffers
from inaccuracies in dense urban and indoor environments
where satellite signals are obstructed [14]. The proposed
work uses local Bluetooth-based interactions and is thus more
accurate on smaller scale.

According to [15], [16], backward contact tracing can be
highly effective compared to a forward-only approach due
to the over-dispersed nature of COVID-19. This is because
a traced source of COVID-19 is highly likely to have infected
other individuals as well [17]. In [18], the authors analytically
predict effects of backward contact tracing and find a dramatic
2-3 times increase in preventing the spread of COVID-19.

III. PROPOSED SYSTEM MODEL
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Fig. 1. Example scenario of a restaurant where four users A-D enter
and leave at different times. Users’ smartphones transmit data to nearby
BLE-S connected to the BS. Infected users (A & D) can be detected
using the proposed system.
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Fig. 2. The spread of COVID-19 among different generations and
contact tracing between them

We now describe how the proposed contact tracing system
works. Users who volunteer for contact tracing must download
the app on their smartphones (User Equipment or UE) and
register with the app. These can be smartphones or devices like
a BLE-based keyfob or a smart wearable. Registration assigns
every user with a User Unique Identifier (UUID) that can not
be used to infer any information about the user. This ID also
ensures correct contact tracing and that impersonation of an
individual is not possible. It can be generated by the server
and can include the one-way hash of the user data and random
noise to maintain uniqueness and ephemerality. A copy of the
UUID is sent to the BS upon every user’s registration. The
BLE Sensors (BLE-S) are installed in buildings. Table I lists
notations like UUID and BLE-S adopted within this paper.
This work can be targeted to corporate campuses, educational
campuses, prisons, etc. This ensures a high adoption rate but
sources of infection outside such premises will go undetected.
The UE contacts the BLE-S installed in buildings to register
contacts. BLE-S are Bluetooth low-energy transceivers that
receive location and UUID from nearby users (Fig.1). Upon
reception, they store the tokens to detect contacts between
users. Directional antennas are used in BLE-S to create a
targeted range of Bluetooth with a diameter of 6ft.; thus, two
UEs discover the same BLE-S only if they are within 6ft. of
each other or less and not otherwise. Such control over the
Bluetooth range is impossible in common smartphone peer-
peer contact tracing apps. Every BLE-S is assigned a BLE-
Sensor Unique Identifier (or BUID). Since this ID uniquely
identifies the fixed BLE-S, thus it is synonymous with the
location of the BLE-S and can also be used to discretely link
a token with a relative location. Since these contain sensitive
information these IDs are randomly generated and regularly
updated. A UE senses if there is a BLE-S in their vicinity
using BLE. Once detected, the UE transmits their information
in the form of a token to the BLE-S at a specified rate as
long as they are in the vicinity (Fig.1 - dotted arrows from
users to BLE-S). The token consists of the user’s UUID and
a timestamp.

The BLE-S also connects with the BS. The BS consists of

3 databases. The first database maintains the record of all the
tokens received from the users (Token Database or TD) and
whether they are infected. The second database accounts for
the different registered users, their identifiers, and their total
contact time with infected individuals (Healthy User Database
HUD). The third database maintains a list of infected users
with their user identifiers (Infected User Database or IUD).
Given how sensitive the information stored on this server is,
it is preferred that the government health authorities maintain
the BS. The BLE-S periodically releases all the tokens it has
stored in its memory along with its identifier (BUID) to the
BS (Fig.1). A token from User Y , received by BLE-S with
BUID B at timestamp TS, can be written as ⟨TS, Y, B⟩. The
BS receives records from every installed BLE-S about all the
users and stores it in the BS-TD. When a user is diagnosed
with COVID-19 they are requested to upload the information
directly to the BS via the internet, which is stored in BS-IUD.
Thus, all the tokens associated with that UUID are marked as
infected in the BS database.

With the above information, the BS tries to evaluate healthy
users’ direct and indirect contacts. Center for Disease Control
and Prevention (CDC) defines a direct close contact as spend-
ing more than ξ = 15 mins within δ = 6ft. of infected
[19]. As an example, Fig. 1 is a restaurant scenario with the
proposed technique. The upper scene and lower scene are 30
minutes apart. In Fig.1, user A experiences direct contact with
infected user B. Thus, for each infected token (Fig.1 A-B),
the BS searches for all BS-TD tokens with the same BUID
and same timestamp. It then adds the contact duration related
to that infected token of the corresponding user in the BS-
HUD. We assume that an infected user contaminates a place
for a window of Tw beginning from when they leave that
place if they spend more than Tm time there. These values are
configurable as per the latest epidemiological research. The
phone-phone apps are not capable of detecting such contacts.
In Fig.1, user D experiences indirect contact with infected user
C even after C has vacated the seat, provided the seat used by
C was not cleaned. To detect indirect contacts, the BS notes
the time the infected user has spent around a BLE-S using its
tokens in the TD. If it is greater than Tm, then the BS looks
for tokens in the TD for healthy users within the Tw window
after the infected user has left the vicinity. A corresponding
number of contact duration are added for respective healthy
users in the BS-HUD. Additionally, the BS periodically checks
the HUD for individuals whose total contact duration (direct +
indirect) has exceeded the threshold ξ. It informs such healthy
users of their possible infection and suggests measures such
as testing and isolation.

We call a subset of users part of a Generation if they are the
same number of transmissions after the source case. Thus, in
Fig. 2, user 1 is part of Generation 0 (Q0) (a.k.a. the source
case); the index case and users (3 & 7) part of Generation
1 (Q1); users 4 & 8 part of Generation 2 (Q2); and users
5, 6 & 9 part of Generation 3 (Q3). Fig.2 shows the index
case (user 3) (Generation Q1). So, forward tracing (red dotted
arrows) identifies users contacted by index case, i.e., user 4
(Generation Q2). In Fig.2, backward tracing (green dashed
arrows) identifies the source of infection (Generation Q0) for
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Algorithm 1 Forward Contact Tracing - Direct & Indirect

1: Input: BS-TD, BS-IUD, Tm, Tw
2: Output: BS-HUD
3: C = {} ▷ tokens already accounted for
4: IDT = {} ▷ Infected Indirect Dummy Token
5: for Y ∈ {Infected Users} do
6: // Direct Contact Tracing
7: for token TY = ⟨TS, B, Y ⟩ ∈ {Y ’s Tokens} do
8: if ⟨TS, B, (UUID = Any)⟩ /∈ C then
9: C.append(⟨TS, B, (UUID = Any)⟩)

10: L = ⟨TS, B, U⟩ ∈ BS-TD, ∀B,U ̸= Y
11: for token T ∈ L do
12: BS-HUD(U)direct.append(T )

13: // Indirect Contact Tracing
14: Array A = Contiguous array of Y ’s tokens
15: for A, let BUID = BA

16: if duration(A) > Tm(= 3 mins) then
17: Ae = last timestamp for A
18: IDT.append{⟨Ae + 1, BA, Y ⟩, ⟨Ae + 2, BA, Y ⟩,

· · · , ⟨Ae + Tw, BA, Y ⟩} ▷ Tw = 15 mins
19: for token TIDT = ⟨TS, BA, Y ⟩ ∈ IDT do
20: if ⟨TS, BA, (UUID = Any)⟩ /∈ C then
21: C.append(⟨TS, BA, (UUID = Any)⟩)
22: L = ⟨TS, BA, U⟩ ∈ BS-TD, ∀B,U ̸= Y
23: for token T ∈ L do
24: BS-HUD(U)indirect.append(T )

the index case user 3, that is, users 1 & 2.
To detect backward contacts in the proposed framework, the

BS looks at the tokens in the BS-TD for the infected index
user (Fig.2 user 3) in the pre-infection period of the user. For
COVID-19, the symptoms manifest between 2-14 days after
exposure [20]; we assume this to be the pre-infection period
of the index user. The BS looks for tokens of other healthy
users with the same BUID as the index user and the same
timestamp - users 1 & 2 during this period. If in Fig. 2 user
1 has sufficient tokens with the index user 3, then user 1 may
be infected and a possible source of infection for the index
case user 3. We use enhanced backward tracing by applying
forward tracing on the Generation Q0 user in the BS-TD. If
user 1 in Fig.2 is identified as the source of infection for index
case user 3, then we can apply forward tracing on user 1 to
find another chain of possibly infected users, i.e., 7, 8, & 9.

IV. FORWARD & BACKWARD TRACING ALGORITHMS

Now, we describe the forward and backward contact tracing
algorithms. We assume that the healthy users contact disease
only from infected who are participating in contact tracing.
Another assumption we make is that infected users always
volunteer to reveal their diagnosis. In Algorithm 1, we show
the forward contact tracing algorithm for both direct and in-
direct contacts. First, we consider every token TY of every
known infected user Y (lines 3 and 5). Then, in line 8, we
search for more tokens in the BS-TD such that the timestamp
is the same as the considered token (TSY ) and also the BUID
(B) and store into a temporary variable L.

L = ⟨TS, B, U⟩ ∈ BS-TD,∀B,U ̸= Y

In lines 6 and 7, we ensure that the combination of times-
tamp TSY and the BUID = B are never repeated once identi-
fied as infected; thus, we create an array C for bookkeeping.

If ⟨TS, B, (UUID = Any)⟩ /∈ C then,
C.append(⟨TS, B, (UUID = Any)⟩)

In line 10, we add the direct contact duration incurred
by tokens in L to corresponding healthy users in the BS-HUD.

BS-HUD(U)direct.append(T )

After this, we move to indirect contact detection. In line
12, we look for a contiguous array A of tokens with the same
BUID (BA) and UUID as the infected user Y . If this array of
tokens A has a timestamp duration greater than Tm(= 3 mins),
then the user Y has spent enough time to cause indirect
contacts. Thus, a time window of Tw(= 15 mins) is infected
around BLE-S with BUID = BA beginning right after the
array’s last timestamp A. Since user Y has already left, there
are no tokens during that time around the BLE-S BA to match
healthy user tokens with. Therefore, we create an array of
dummy tokens to mark the contamination of the place, Infected
Indirect Dummy Token, or IDT, for the duration of this window
in line 15.

IDT.append{⟨Ae + 1, BA, Y ⟩,⟨Ae + 2, BA, Y ⟩,· · · ,
⟨Ae + Tw, BA, Y ⟩}

After this, we find tokens in BS-TD with the same BUID
and timestamp as tokens in IDT (line 19).

L = ⟨TS, BA, U⟩ ∈ BS-TD,∀B,U ̸= Y

Finally, we add the corresponding duration of indirect
contact to corresponding healthy users in BS-HUD (line 21).

BS-HUD(U)indirect.append(T )
In Algorithm 2, we discuss how to perform backward contact
tracing using the proposed system for direct and indirect
contacts. For an index user, Y , who is now infected, we
assume the Pre-infection period (PIY ) as,

PIY = [TSY−symp − 14days, TSY−symp − 2days].
We divide the dataset of tokens into those received by the
infected user Y (set T1) and by others (T2) during this pre-
infection period. T2 can be filtered wisely, picking only those
users in the same city neighborhood as user Y and thus likely
to have been the source of infection for Y .

T1=⟨TS, B, U = Y ⟩ ∈ BS-TD ∀ TS ∈ PIY
T2=⟨TS, B, U ̸= Y ⟩ ∈ BS-TD ∀ TS ∈ PIY

For every user U in T2, we find the total contact duration, Θ,
between U & Y (described in detail in Algorithm 1). If that
is greater than the time threshold for making contacts defined
by the CDC, i.e., ξ (= 15 mins), then it is a candidate for the
source of infection for index case, Y (lines 9-11).

Θ = Total direct contact duration b/w U & Y
If Θ > ξ then CBC.append(U)

However, the index user may have also gotten the infection
via indirect contact and our technique can detect this (lines
13-20). We look for contiguous arrays of tokens in T2 for
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Algorithm 2 Backward Contact Tracing - Direct & Indirect

1: Input: PIY , BS-TD, BS-IUD, Tm, Tw
2: Output: BS-HUD
3: CBC = {} ▷ candidate backward contacts
4: for Y ∈ {Infected Users} do ▷ index case user
5: // PIY - Pre-infection period of index case user Y
6: PIY = [TSY−symp − 14days, TSY−symp − 2days]
7: T1=⟨TS, B, U = Y ⟩ ∈ BS-TD ∀ TS ∈ PIY
8: T2=⟨TS, B, U ̸= Y ⟩ ∈ BS-TD ∀ TS ∈ PIY
9: for User U ∈ T2 do

10: // Direct Contact Tracing
11: Θ = Total direct contact duration b/w U & Y
12: if Θ > ξ then ▷ ξ is contact duration threshold

(= 15 mins)
13: CBC.append(U)

14: // Indirect Contact Tracing
15: Array A = contiguous token array in T2

16: for A, let BUID = BA

17: if Duration(A) > Tm(= 3 mins) then
18: Ae = last timestamp(A)
19: IDT ={⟨Ae+1, BA, U⟩, ⟨Ae+2, BA, U⟩, · · · ,

⟨Ae+Tw, BA, U⟩} ▷ (Tw = 15 mins)
20: TCBC = IDT ∩ T1

21: if TCBC > ξ then
22: CBC.append(U)

every user. If we find such an array with a duration greater
than the threshold for indirect contacts Tm(= 3 mins), then
we create an Infected Indirect Dummy Token, IDT, same as
in Algorithm 1.

If Duration(A) > Tm then
IDT = {⟨Ae+1, BA, U⟩, ⟨Ae+2, BA, U⟩, · · · ,

⟨Ae+Tw, BA, U⟩}

Finally, similar to lines 10-11, we find common tokens
between IDT and T1, and if it is greater than the time threshold
for making contacts ξ(= 15 mins), it is another candidate for
the source of infection for index case, Y . Finally, candidate
sources from both kinds of contacts are informed of being sick
asymptomatically if not already known to be infected.

V. SIMULATION SETUP

We use a branching process to simulate the effectiveness
of combining ‘backward’ tracing with traditional ‘forward’
tracing when dealing with the presence of overdispersion in
the COVID-19 transmission based on the works - [15], [18],
[21]. Overdispersion is a phenomenon where the distributions
in the number of infected has a much higher variability instead
of a homogenous spread. This gives rise to concepts like
superspreaders and hotspots where a smaller population is
responsible for a disproportionate number of transmissions.

Through our simulation, we examine the effects of our
approach, which involves both forward and backward tracing
methods. We assume a tree-like structure for the transmis-
sion of disease (e.g., Fig. 2, solid blue arrows). We assume
that Generation Q0 user 1 can be found using backward
tracing from the known-infected index user. Also, users in

Q1, including the index case user, are known to be infected
through symptomatic diagnosis. Some of users in Q2 are also
exposed to the disease but are well informed before becoming
infectious through contact tracing. Based on Generation Q2

users’ willingness to comply with quarantine, we study the
effect of contact tracing in saving the users in Generation
Q3 from getting infected. Due to the overdispersive nature of
COVID-19-like diseases’ successor distribution, the number of
successors of any random individual is expectantly less than
those identified by backward tracing (source case) as the latter
are already known to have at least one successor (index case).
Thus, the source case is likelier to infect other nodes than the
index case. Let p(f) represent the probability mass function of
f , the number of successor transmissions originating from any
diagnosed case. Thus, the probability distribution of several
successors of the identified source case (Q0) is p(f |Q0).

p(f |Q0) =
f · p(f)
E(f)

. (1)

where E(f) =
∑∞

f=0 f · p(f), is the expectation of f . The
expected number of Q1 cases that can be identified through
backward tracing (inclusive of the index case) is expressed as:

E(f |Q0) =

∞∑
f=0

f · p(f |Q0) (2)

=
µ2 + σ2

µ
(3)

Here, µ is the mean of f and σ2 is the variance of f .
We assume that p(f) follows a negative binomial distribution
with an overdispersion parameter k, a common assumption in
previous literature [22]. Thus, according to [23], the variance
of f with a negative binomial distribution follows,

σ2 = µ+
µ2

k
(4)

The Reproduction number, R (also denoted by R0), is com-
monly defined as the average number of users infected by any
user, which is numerically the same as µ. This implies that
the diseases that are transmitted easily and also by fomite-
based contacts will have a higher value of R. Analyzing the R
value is important for risk assessment, public health planning,
and policy decision-making. Thus, the expected number of Q1

cases identified by backward tracing are:

E(f |Q0) = 1 +R ·
(
1 +

1

k

)
(5)

As explained before overdispersion leads to a dispropor-
tionate spreading of the virus. And, a smaller value of k
indicates a higher degree of overdispersion. This gives rise
to concepts like superspreaders who are more likely to spread
the virus than the general population. COVID-19 is known to
have a small k ∈ [0.1, 0.5]. It is noteworthy that [E(f |Q0) =
1 + R(1 + 1

k )] > [E(f) = R], which proves what was stated
earlier, that due to overdispersion in f , the expected number
of successors of a random individual is expectantly less than
those identified by backward tracing. In the simulation, we
vary R & k and predict the average number of Q1 users
identified by backward tracing (E(f |Q0)) and the probability
it is larger than 5, 10, 15, etc.
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We measure the efficiency of the proposed method, defined
as the relative reduction in the number of Generation 3 or Q3

cases. Due to timely action by Q2 cases such as isolation, etc.,
several Q3 cases are averted (A3). We estimate A3 as,

A3 =

∞∑
f0,f1,f2=0

(f0 · p(f0|Q0))(f1 · p(f1))(f2 · p(f2))

= R2 ·
(
1 +R ·

(
1 +

1

k

))
.

(6)

First, we ignore the backward tracing and only focus on
forward tracing. The total number of Q1 cases excluding the
index case is E(f |Q0) − 1 = R(1 + 1

k ). In the absence of
backward tracing, the source case remains unknown. Thus,
only cases in Q1 for whom further (forward-only) contact trac-
ing will occur are those detected through random population
testing independent of contact tracing. We assume t to be the
fraction of cases detected through independent disease testing.
Thus, the total cases detected in Q1 (including index case) are
1+R · t(1+ 1

k ). The number of Q2 cases generated by all the
Q1 cases are R(1 +R · t(1 + 1

k )), assuming R is the average
reproduction number. We assume the accuracy of the forward
contact tracing to be α, then only R · α(1 +R · t(1 + 1

k ))
users will be detected in Generation Q2 by the contact tracing.
α represents the accuracy of detecting both kinds of contacts,
direct & indirect. A higher value of α means a more effective
contact tracing technique in place which requires a sufficient
proportion of the population to participate in the contact
tracing. Our previous work [3] also detected both direct and
indirect contacts and used a beacon infrastructure to detect
contacts. We use the same accuracy value derived from that
work in our simulation in Section VI as an approximation.

We assume that due to isolation, individuals belonging to
Q2 have a reduced reproduction rate, w ∗R w ∈ [0, 1]. Thus,
the number of Q3 cases that remain uninfected benefiting from
forward-only contact tracing are:

ΠF = (1− w) ·R
[
R · α

[
1 +R · t

(
1 +

1

k

)]]
. (7)

In combined forward & backward tracing also, the total
number of Q1 cases are R(1+ 1

k ). We assume that the probabil-
ity of identifying the source case from the index case through
contact tracing is s. This is essentially the accuracy of the
backward contact tracing (Algorithm 2). A higher s would
imply the better efficiency of the backward contact tracing
method. Thus, the effective proportion of Q1 cases identified
by applying forward tracing on the source case (Q0) is sα.
Thus, the proportion detected either through backward tracing
or independent testing is (1 − (1 − t)(1 − sα)). Following
similar logic as the forward tracing case, the total number of
cases identified in Q1, given only the index case, are 1 +
R[1− (1− t)(1−sα)][1+ 1

k ]. And the identified Q2 cases are
R ·α

[
1+R[1−(1−t)(1−sα)][1+ 1

k ]
]
. Finally, the number of

Q3 cases that were averted because of forward and backward
contact tracing are:

ΠFB = (1−w)·R
[
R·α

[
1+R[1−(1−t)(1−sα)][1+

1

k
]
]]

(8)
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Fig. 3. Number of cases, A1, A2, & A3, in Generations Q1, Q2, &
Q3 vs R

Thus, the efficiency of contact tracing in the case of
forward-only tracing and forward-backward tracing is -

ΨF = ΠF /A3 (9)
ΨFB = ΠFB/A3. (10)

VI. RESULTS & DISCUSSION

Drawing upon the mathematical formulations presented in
Section V, we developed a Python-based simulation model.
Our simulator extends the framework introduced in [18].
While the latter provides a general analysis, we adapt it to
evaluate the proposed method specifically along with two other
existing techniques. The purpose of the simulator is to study
the efficiency of the proposed forward and backward contact
tracing technique. In Fig. 3, we study the no. of cases in
different generations A1 − A3 w.r.t. R. We also observe the
contribution of different generations. The number of cases
increases much more rapidly in the case of Q3 than Q2 or Q1.
At the largest value of R considered (R = 2.8), Q3 contributes
to around 67% of the total cases.

In our simulations, we assume a single source case (Q0),
which produces various successors in three subsequent gener-
ations (Q1−Q3). We observe the efficiency contact tracing has
on the prevention of COVID-19 in Generation Q3 (Eqns. 7 and
8). Alongside, we study the effects of parameters like α,R, k,
etc. on the same. R has an estimated range of {1.2, 2.5}
for COVID-19, thus for a more inclusive range we assume
R ∈ {0.8, 1.2, 2.5}. In Fig. 4, we show the proportion of Q3

cases prevented by forward-only tracing (ΨF ) and also by
forward-backward tracing (ΨFB), for different values of R.
We plot three bands/regions of different colors (see Fig. 4
legend) for different values of R. The upper dashed line for
each region has w = 1 (no reduction in R due to quarantine
by Q2) whereas the bottom dashed lines denote w = 0.2
(Reff = 0.2×R). Thus, vertically, the band represents the range
of contact tracing efficiency depending upon the different
degrees of quarantine in Generation Q2. A fundamental insight
we gain from this figure is that ΨF & ΨFB rise as R increases.
A higher value of R means a higher number of infected
users. This finding is consistent with conclusions drawn in
our earlier study [3], which demonstrated that tracing becomes
more efficient as the pool of individuals to be traced grows.

We compare the proposed work to two other existing works
- PC3T [24] and LTESafe [11] (described in Section II).
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Although there are many works in this area of contact
tracing, to show comparison with the proposed method we
pick these two state-of-art techniques. Additionally, they are
much closer to our work and make for a fair comparison. We
have also drawn vertical lines indicating the values of α or
the detection rate of our present work (α = 0.92, mentioned
before in Section V) and also from PC3T [24] (0.942) and
LTESafe [11] (0.928). The values of accuracy mentioned in
[24] and [11] are only referring to direct contacts (αd). In
reality, there must have also been indirect contacts that were
never accounted for. As mentioned in Section II, according
to [12], 25% of deaths in the UK during the post-lockdown
period were due to fomite transfers (touching surfaces). So, the
total transmissions due to fomite transfer and virus-containing
particles in the air will be greater than deaths. Thus, the
effective α for [24] and [11] is expected to be more than 25%.
Thus, an approximation of the effective α for [24] and [11]
can be α ≤ 0.75 × αd, or 0.706 & 0.696, respectively since
they only consider direct contacts.

Both, ΨF & ΨFB , are better in the case of the proposed
method when compared to existing works (PC3T and LTE-
Safe) (Fig. 4) due to higher accuracy of BECT. However, the
difference is more significant in the case of forward-backward
efficiency instead of forward only. Similarly, in Fig. 5, 6 and 7,
instead of R we show regions with different values of k, s & t
while α and w vary the same as before. In Fig. 5, we observe
that forward-only tracing (ΨF ) bears the impact of varying
k or overdispersion parameters. We assume the values of
k ∈ {0.1, 0.5, 1} to include the case of lowest overdispersion
to maximum. However, this effect is almost neutralized by
the addition of backward tracing. ΨFB is almost independent
of variation in k as α increases. On the other hand, in Fig.
6, we observe the opposite effect. There is no impact of s
on forward tracing (ΨF ). This is because s corresponds to
the accuracy of identifying the source (backward tracing), so
a higher s will not impact forward-only efficiency. But, ΨFB

sees a significant difference with varying values s. We vary the
values of s ∈ {0.1, 0.5, 0.95} to account for both reliable and
inaccurate backward contact tracing technique. Considering
the efficiency of forward-only tracing, we observe that the
variable t has the maximum impact on ΨF , while it has little
effect on ΨFB . Thus, one can focus on improving the accuracy
of independent testing to have higher forward-only efficiency.

VII. CONCLUSIONS

In this work, we propose a contact tracing approach for
forward and backward contact tracing. The proposed approach
uses Bluetooth sensors that detect the presence of users in a
vicinity and inform a centralized BS about anonymized user
locations. Fixed sensors allow for detecting indirect contacts
between users like fomite transfer. The BS can detect forward
and backward contacts of a given user. We conducted a sim-
ulation to evaluate the impact of the proposed technique on
the prevention of the spread of COVID-19 and compared the
results with two other existing works. We found improvement
in averting COVID-19 cases when compared to existing works.
However, this work has a few limitations. The privacy risk to
the users are not evaluated given their health data is stored into

an external server. We have analyzed the work using simula-
tion and performance analysis of the proposed CT technique
in the real world is yet to be done.
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