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Abstract: With the increasing incidence rate of lung cancer patients, early diagnosis could help in reducing the mortality rate.
However, accurate recognition of cancerous lesions is immensely challenging owing to factors such as low contrast variation,
heterogeneity and visual similarity between benign and malignant nodules. Deep learning techniques have been very effective
in performing natural image segmentation with robustness to previously unseen situations, reasonable scale invariance and the
ability to detect even minute differences. However, they usually fail to learn domain-specific features due to the limited amount
of available data and domain agnostic nature of these techniques. This work presents an ensemble framework Deep3DSCan for
lung cancer segmentation and classification. The deep 3D segmentation network generates the 3D volume of interest from
computed tomography scans of patients. The deep features and handcrafted descriptors are extracted using a fine-tuned
residual network and morphological techniques, respectively. Finally, the fused features are used for cancer classification. The
experiments were conducted on the publicly available LUNA16 dataset. For the segmentation, the authors achieved an
accuracy of 0.927, significant improvement over the template matching technique, which had achieved an accuracy of 0.927.
For the detection, previous state-of-the-art is 0.866, while ours is 0.883.

1 Introduction
Lung cancer with a standardised incidence rate of 230 cases per
million is one of the most widespread cancers in the world [1],
constituting about 19% of deaths by cancer [2]. Lung cancer results
in more than 1.59 million deaths, more than colon, prostate and
breast cancers every year [3]. More than 6.1 million deaths result
from direct tobacco use, and about 900,000 deaths occur from
exposure to second-hand smoke [4]. The escalating pace of lung
cancer incidents combined with the nature of its recurrence, is
becoming a significant health care issue. Therefore, the need for a
solution is of utmost importance which can help in early diagnosis.

The increase in survival rate has been slow for lung cancer in
comparison to most cancers. More than 62% of the diagnosed cases
occur at the age of 65 or above [5] leading to the survival rate for
lung cancer being only 10%. National Lung Screening Trial
(NLST) in their report demonstrate on how helical computed
tomography (CT) scans can help in reducing the mortality rate of
lung cancer by 20% [6]. Multifarious scanning processes have
provided an expanding number of high-resolution CT scans [7]. CT
scans in clinical practice can capture subtle granularities of lung
nodules. However, the high sensitivity of CT imaging leads to
voluminous data with complex ambiguities being generated [8].
Therefore, it is tough for radiologists to differentiate the lesions
from healthy tissues. With the advancement of computerisation and
data processing, computer aided design (CAD) system shows great
potential in diagnostic assistance.

Segmentation is used for highlighting the nodule in the CT
scan, while classification is used after this to detect whether the
nodule is malignant or benign. An end-to-end deep learning
architecture which takes the input image and classifies it as
cancerous or not does not make the intermediate steps, the basis of
prediction clear. In the medical domain, where we have to deal
with such sensitive issues, the prediction basis, why is the network
saying what it is saying has to be clear to both the radiologists and
the patients. In the proposed pipeline architecture, the segmented
nodules are generated, and they can be critically examined by
radiologists to check for correctness. Any errors which have crept

in can also be identified and corrected. Although there are many
existing techniques in literature for lung cancer nodule
segmentation and classification, there is scope of performance
improvement in both these areas. Accurate recognition of lesions is
immensely challenging owing to factors like low contrast variation,
visual similarity between benign and malignant nodules, and so on.
This paper proposes a novel approach for recognising lesions
which focuses on the inner structures of nodule voxels. The
objective is to segment the pulmonary region from outside and
each of the lesions as well.

In this paper, a deep learning framework consisting of a residual
network (ResNet) is employed to produce the segmentation results.
Using the segmented nodules, an approach for tumour diagnosis is
dilineated which utilises the power of morphological and deep
learning descriptors. The overall architecture pipeline is depicted in
Fig. 1. The key contributions of this paper can be summarised as
follows: 

1. The system proposed here achieves an accuracy of 88.3% for
the cancer classification phase.

2. A 3D segmentation network uses volumetric segmentation
instead of slice-by-slice processing. It achieves a Dice
coefficient of 0.958.

3. Visual analysis of nodules is a sophisticated and tiresome task
even for an expert radiologist as the difference between
cancerous and non-cancerous lesions is very minute. In this
paper, we delineate a pipeline for obtaining 18 morphological
descriptors.

The rest of the paper is organised as follows. Related work in
this domain is highlighted in Section 2. Section 3 describes the
dataset. Proposed Deep3DSCan framework is explained in Section
4. Section 5 discusses the cancer classification of patients. Results
of the research and conclusion are presented in Sections 6 and 7,
respectively.
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2 Literature review
It has been shown in existing literature that advancement in
automated designs can help radiologists in early cancer prediction
[6, 9]. CAD models aid in the diagnostic determination of
pulmonary nodules and in curtailing false positive instances [10].
A diagnostic model is generally composed of four phases. Pre-
processing is the first phase and it aims at highlighting the region
of interest (ROI). The second phase is segmentation of parenchyma
for reducing the search area. Feature extraction is the third phase
followed by cancer diagnosis, which is the fourth phase. This
section reviews various state-of-art approaches that have been
developed for cancer diagnosis.

Most of the models proposed till date focus on enhancing one of
the four phases mentioned above. Considering the first phase,
image pre-processing involves reduction of noise in images.
Research in pre-processing techniques has been extensive.
Numerous filtering and statistical techniques for the same have
been proposed in the past [11, 12].

The efficiency of CAD model depends on its segmentation
phase. Most of the existing segmentation algorithms in image
processing domain [13, 14] rely on edge detection and contour
curvature extraction. However, issues like inhomogeneities and
small density variation in the CT scans limit the application of
these techniques. Uzelaltinbulat and Ugur [15] used thresholding
for segmenting the lung scans using the difference between
greyscale pixels of lesions and the exterior region. Recently, the
application of neural networks in the domain of computer vision
has attracted many researchers. Variety of neural network
architectures such as convolutional networks, capsule networks and
deep belief networks (DBNs) have been used for lung image
segmentation. The neural network automatically learns the regions
of interest using available ground truth. Initially, the research began
with 2D convolutional networks [16]. However, in the recent past
there has been a paradigm shift to medical-specialised architectures
such as U-Net [17] which are specifically designed for extraction
of lesions from a medical dataset [18, 19]. Our network differs
from U-Net in two major ways: It has 3D filters which perform
volumetric convolutions on 3D input and uses a Dice coefficient as
the loss function, instead of cross-entropy. Dice coefficient by
design performs better when there is a class imbalance, which in
this case is between the number of voxels present in the foreground
and number of voxels present in the background.

The general trend in radiology classification involves handling
an enormous collection of quantitative imaging components.
Medical images are converted to mineable data for calculating

feature descriptors. The most naive approach is to extract the
images and feed it to a standard perceptron model. But with the
escalating volume of CT scans, this method is not scalable.
However, the scope of feature extraction is not just limited to the
perceptron model. Researchers have extended the classical
technique of extracting features from images. Abdullah and
Shaharum [20] suggested using a feed-forward neural network for
lung X-rays. However, the approach employed only three variant
features consisting of area, perimeter and shape. Kuruvilla and
Gunavathi [21] extended the model by using a set of six discrete
parameters. da Silva-Sousa et al. [22] utilised geometrical, gradient
and spatial properties for improving the model accuracy. After
extracting the ROI, authors calculated scale-invariant gradient
(SIFT) using ten descriptors.

The application of neural networks is not limited to the
segmentation phase; rather their ability to extract relevant features
has been utilised in other areas as well. The neural networks
family, consisting of convolutional neural networks (CNNs),
recurrent neural networks and residual neural networks, have the
capability of learning a large number of descriptors which provide
enhanced accuracy over traditional handcrafted feature extraction
approaches. Kumar et al. [23] employed features from neural
networks for lung cancer classification on CT images. Hua et al.
[24] also examined the impact of deep learning on the Lung Image
Database Consortium (LIDC) dataset. They accomplished a
sensitivity of 70.4 and 73.3% using DBNs and CNNs, respectively.
Ciompi et al. [25] and van Ginneken et al. [26] have used OverFeat
[27] (a pre-trained CNN) for classification of pulmonary lesions.
They demonstrate the potential of pre-trained CNNs in therapeutic
and pharmaceutical cases.

Existing model designs use either geometric features that obtain
structure specific shape, texture and morphological facets or
determine descriptors from neural network architectures.
Geometric features are domain specific but challenging to extract.
On the other hand, neural network descriptors are domain agnostic
but have advantages like effectiveness in previously unseen
situations and the ability to detect even minute differences and
providing scalability.

In this paper, an attempt is made to fuse these two diverse
categories of feature techniques to create a unified set of attributes
which will likely surpass either category of techniques. This paper
also discusses 3D residual model architecture for nodule extraction
using volumetric segmentation.

Fig. 1  System model consisting of the various phases
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3 Dataset
In this work, a publicly available dataset has been used – Lung
Nodule Analysis 2016 Challenge [28], commonly referred to as
LUNA16. LUNA16 is a subset of the LIDC dataset [29] consisting
of CT scans of 888 patients and removing scans with a slice
thickness greater than 2.5 mm. The CT scans are stored in
MetaImage (mhd/raw) format. Each .mhd file is stored with a
separate .raw binary file for the pixeldata. The developers of the
challenge provide the ground truth but do not specify the
malignancy information about the patient. They also provide
information of 551,065 candidates and their label information
categorising as ‘non-cancerous’ or ‘cancerous’ using detection
algorithms.

Cancerous nodules are labelled as 1 while non-cancerous
nodules are labelled as 0. However, there is a possibility of
multiple candidates existing for single patient. However, there is a
possibility of multiple candidates existing for single nodule. For
classification phase, the candidate anotation is used to label the
patients. Any patient's scan containing even 1 cancerous nodule is
labelled as cancerous. The distribution of location of lesions for the
patients are shown in Fig. 2. 

4 Deep3DSCan framework description
The proposed framework can be subdivided into various stages.
The pre-processing phase takes the input CT scans for every
patient and applies image processing techniques to decrease the
noise and highlight volume of interest (VOI). VOI (nodules) are
extracted in the segmentation phase. Then classification of nodule
is done on the basis of fused features extracted from 3D ResNet
and handcrafted features from morphological techniques. The
framework is explained in detail in following sections.

4.1 Pre-processing

The pre-processing step consists of a series of operations for
reducing the exploration region. A study of CT scans revealed that
there is a substantial radio-density variation between the
pulmonary region and surrounding neighbourhood. Thus,
thresholding was applied to highlight the pulmonary region from
the rest of the search space. Linear metamorphosis of the
attenuation coefficient is carried out and the pixel values are
transformed into Hounsfield units (HU). HU is employed as the
measure of the radio-density. The HU values for the region-of-
interest exists between −1000 and −320. Other areas such as air,
bone, water, blood were masked out. The mean is calculated for all
images to zero-centre the data. In this stage, the patients are given
labelled as cancerous and non-cancerous as discussed in the
previous section.

4.2 Segmentation architecture

Segmentation is the process of constructing segments of an image
by partitioning it using appropriate techniques. Enhancing the
resolution of images has produced a multifold increase in
diagnostic capabilities [19]. The CT scans are 3D in nature, and
dealing with such voluminous information is a challenging task. In
medical volumes, the anatomy of interest is a quite small region
compared to the whole image. In many of the images, the size of
the image is about 36,000 times larger than the lesions present in
them. Shallow segmentation networks which are a few layers deep
fail to segment such small lesions effectively. A 3D segmentation
network is designed which gives an efficient solution for extracting
the nodules using the concept of V-Net [30].

The proposed segmentation technique substantially differs from
previous state-of-art approaches. Unlike others [31], we refrain
from patch-wise image processing. Patch-wise segmentation
merely examines the geometric neighbourhood and is thus
susceptible to failure. The segmentation architecture is depicted in
Fig. 3. At each stage, convolution operations are performed to
extract and learn features from the data. This is a fully
convolutional network, there are no pooling layers in this
architecture, which speeds up backpropogation updates and
requires lesser memory, which speeds up training [32]. The
segmentation architecture can be subdivided into two halves. As
we proceed down the network, the receptive field of the network
increases, which is the area of the image which can be percieved by
the particular stage. The left branch using ‘down convolution’
performs compression, while the right section with ‘up
convolution’ decompresses the signal back to its original
dimensions. There are skip connections which go from each stage
in the left part of the network to the corresponding stage in the
right.

Each stage in the proposed segmentation architecture consists
of three convolutional layers. In a residual setup, not only is the
output of the first convolution layer passed to the second and
second to third layer, but the output of the first convolution layer is
concatenated to the output of layer 3 (and so on). These
connections are known as ‘skip connections’. How these layers
function is described in Section 4.3. The convolution operations are
performed with 2 × 2 × 2 voxels wide kernels. The ‘down’
convolution operations reduce the resulting feature map at every
stage to half, while doubling the number of channels. The right
portion extracts features and reconstructs the higher resolution
feature map from the lower stages to assimilate the necessary
information. The skip/residual connections coming from the left
half of the network ensure that the assimilation will contain both
the high-level features, coming from the stage below as well as the
corresponding low-level features extracted in the corresponding
left stage. This is important as otherwise important contextual
information would be lost. The skip connections coming from the
left half of the network ensure that the assimilation will contain
both the high level features, coming from the stage below as well
as the corresponding low level features extracted in the
corresponding left stage. The feature map is converted into two
probabilistic segments as foreground and background by applying
a softmax filter. The foreground is the main ROI, while the
background contains additional information which is also
important for providing the proper context. The probability of a
voxel belonging to ROI is calculated using thresholding. All voxels
having probability of 0.4 or more form the part of foreground. The
expression for Dice coefficient [33] is given as follows:

Dice coefficent(D) =
2∑i

N (pigi)
∑i

N (pi)2 + ∑i
N (gi)2 (1)

where pi is the predicted binary segmentation, gi is the ground truth
binary volume and the number of voxels are represented by N. The
proposed segmentation network is based on the Dice loss function,
the gradient to be optimised is given as follows:

Fig. 2  Distribution of location of lesions in x, y and z coordinates for 800
patients. Benign lesions (500) are marked as red, while malignant or non-
cancerous (300) are marked as black
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∂D
∂pj

= 2.
gj ∑i

N pi
2 + ∑i

N gi
2 − 2pj ∑i

N pigi

∑i
N pi

2 + ∑i
N gi

2 2 (2)

The input image is broken into multiple batches of
128 × 128 × 64 voxels called blocks. The input to the network is a
tensor of the form [16, 128, 128, 64, 1] where the image is broken
into chunks. This step is required to avoid performance degradation
because of redundant computation and to discard the less useful
information. The LUNA16 dataset is used to train network. The
dataset contains an annotation of nodules which have size > 3 mm.
The block size of 128 × 128 × 64 also ensures that there would
generally be one nodule per volume. If the same nodule is present
in two volumes, the network treats it as if there are two nodules.
This assumption does not create any issues of duplicate nodule
identification, as features are concatenated in-order resulting in a
tensor as if there was a single nodule only. The foreground and
background outputs have the same spatial dimensions as that of
input, with size of 128 × 128 × 64 voxels. Segmentation results of
patient are depicted in Fig. 4. 

4.3 Residual network features

With the evolution of deep neural networks (DNNs), experts have
employed more sophisticated techniques involving CNNs to
address different problems, like AlexNet [34]. One of the
revolutionary neural network architectures which was introduced in
this domain is the deep ResNet, also known as ResNet [35]. The
motivation behind using the ResNet architecture over conventional
neural networks is to address two commonly faced issues.

Firstly, as features are learned in the layers and the depth of
DNN increases, the performance of model will increase as long as
the model is not over-fitting. However, it is generally seen that the
accuracy drops as the depth of the network architecture increased
beyond a certain threshold. As the gradient progresses along the
network, the backpropagation error becomes very small, and the
weights of layers hardly change. This is the vanishing gradient
problem [36], which results in the layers learning very little
information, nothing tangible. The second problem is the
degradation problem. As the number of layers increase, performing
optimisation on a huge parameter space becomes difficult, leading
to higher training error and compounding problems like overfitting.
The residual learning framework addresses these issues effectively

and eases the training of these networks by using skip-connections.
These connections forward the gradient every few layers, so that
the gradient is not lost. These connections help the the
convolutional layers learn contextual information, which goes a
long way in preventing overfitting. These connections also help in
decreasing the training time. It also provides a check-and-balance
system where it is possible to guage the effectiveness of depth, by
comparing the difference between the output of the residual block
and its input. If it is not useful then the entire block can be done
away with. In this work, a 2D ResNet model is preferred instead of
other DNN architectures.

Fig. 5 depicts on how ResNet uses a sequence of layers stacked
together. The functionalities of each layer are described in brief
here:

• Convolutional layer
Convolutional layer, as the name suggests, applies a

‘convolution’ operation. The convolution operation on the input
results into the feature map. The feature map is passed to activation
function or ReLU layer.
• Rectified linear layer

Rectified linear units layer is commonly known as ReLU. It
applies max(0,x) as an element-wise activation function.
• Batch normalisation

ResNet heavily relies on batch normalization (BatchNorm). The
basic idea behind batch normalisation is to limit covariate shift by
normalising the activations of each layer. It allows each layer to
learn on a more stable distribution of inputs.

After the segmentation step, 2D slices of the 3D image are
taken and passed to the ResNet model as input. 2D input is used in
this case as only the region which contain the nodule is needed in
this part of the architecture pipeline. 3D convolution operations are
much more computationally intensive compared to 2D operations,
hence unnecessary information is discarded. Each channel from the
network containing the nodule referred to as a ROI is the input to
ResNet. Segmentation results in 2 VOI for each patient of size
128 × 128. These ROI are used to train a ResNet architecture for
cancer classification. The 16 ROI are fed simultaneously to the
network. The input to ResNet has dimension (16, 128, 128). The
first dimension stands for batch size, while the second and third
dimensions are x and y axes, respectively.

Fig. 3  Segmentation network architecture. The input to the network has the same spatial dimensions of 16 channels, with each channel of size 128 × 128 × 64
voxels
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The network architecture in a 2D CNN is designed in a way that
it reuses its weights in the ROI dimension. ResNet convolves the
two spatial dimensions and reduces the input tensor of shape
(16, 128, 128) to an output tensor with binary classification 0 or 1.
For training the architecture, the malignancy information of each
patient has been used which is available in the LUNA16 dataset.
This information is mapped to the respective input coming from
the segmentation architecture. The penultimate layer is removed
and features from morphological descriptors are added. Instead of
using a softmax layer, a XGBoost classifier is used. The motivation
behind classification with the ‘max’ function to form binary
classification is that the ‘cancerous’ nodule also determines the
cancer likelihood of the whole patient. This final output scalar will
be the prediction for a patient. This setup is directly end-to-end
trainable from 16 ROI per patient to a single prediction per patient.

4.4 Morphological descriptors

Understanding of morphological properties is essential for proper
classification. Although ResNets have emerged as the most widely
used techniques for classification yet, they still fail to learn
domain-specific features or characteristics that can be very vital in
classification. For extracting morphological features, a bounding
box is generated around the image. The image is scanned from the
beginning along the axis and tries to fit the smallest rectangle that
contains the ROI or nodules. Four images are generated for each
ROI by applying rotation, transpose, inverse on the original ROI
matrix. Fig. 6 gives information about the morphological features
that are calculated on each ROI. For the sake of brevity, the
mathematical proof of the following descriptors is skipped. For
details, the interested reader may refer to ‘Practical Conic Sections:
The Geometric Properties of Ellipses, Parabolas and Hyperbolas’
[37] and ‘The Ellipse: A Historical and Mathematical Journey’
[38].

All the features from the patient are concatenated in order to
form a feature vector consisting of 4 × 18 features. Finally, the
feature vector (along with tuples) is flattened to form a feature
vector of size 120 and padding up with 0, in cases where no nodule
is found. The feature vector is passed on to XGBoost classifier.

4.5 Processing time

The pre-processing stage took 24 h, once the best techniques to be
used were identified. The training of the segmentation architecture
took six days on a Tesla K-80 GPU on Google Colab. Access was
reset every 12 h as per their policy, hence weights were saved and
then loaded when the next subset was used for training. The
dataset, model and weights were stored on google drive, which was
mounted every time a new session was started. Training of ResNet
took two days, about 40 h on a GeForce GTX 760, while the
application of morphological descriptors took 6–8 h for all the
images.

5 Cancer classification
Features from two phases are fused together and passed onto a
classifier. XGBoost is chosen as a classifier as it provides
automatic handling of sparsity patterns. Sparsity can occur
primarily because of two reasons: (i) presence of erroneous values
in the data due to segmentation, and (ii) frequent zero entries.
Studies [26, 39, 40] show XGBoost dominates classification of
structured datasets.

However while training the classifier, it tend to become biased
because of skewedness of data. So, synthetic minority over-
sampling technique (SMOTE) [41] was used with the random state
being set to 2, for handling data imbalance. SMOTE decreases the
ratio of the number of samples in the majority class over the
number of samples in the minority class. It is also important to
have a balanced test dataset, otherwise it is possible that a model
always giving deterministic output say ‘1’ may result in high
accuracy.

The test data is constituted of 60 patients. 30 patients of test
data were cancerous and 30 patient were non-cancerous. The
classifier was trained with number of estimators as 1000, and
random state being set to 4242. Binary:logistic and logloss were
chosen as objective function and evaluation metric, respectively.

6 Numerical results
Different researchers have used different parameters for exhibiting
their performance. In this paper, some extensive parameters are

Fig. 4  Segmentation results. Left image depicts the original scan. Right
image depicts the image after segmentation for a patient. White portions
are the nodules, grey are the lungs and black is the background

 

Fig. 5  Depiction of different stages in ResNet architecture
 Fig. 6  Description of morphological features used for classification
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shown on which this model achieves a better performance to
existing works in literature.

To highlight the performance of segmentation phase, the Dice
coefficient metric is used. Dice coefficient measures how similar
the segmentation results are to the ground truth. The ground truth is
available in the dataset, that was used to find the dice.The
segmentation architecture is trained on 800 instances. 80 patients
scans were used as test data to measure the efficiency of this
model. Fig. 7 depicts the comparison of different CAD models that
have used Dice coefficient metric. This model achieves a dice
coefficient of 0.958, significantly higher than deep graph cut [33]
and template matching techniques [42] which achieve 0.75 and
0.927, respectively. The superior performance of the segmentation
architecture is because of the volumetric convolutions it performs,
thereby using all the information which is present in the CT scan,
in contrast to the typical slice by slice approach which is taken by
2D networks. The latter results in loss of information while
processing, as well as a lack of context between slides.

Fig. 8 highlights another major contribution of this paper,
delineating the approach for obtaining morphological descriptors. 
Eighteen morphological features have been considered,
significantly more than [20–22].

The confusion matrix (Fig. 9) was generated for the test dataset
consisting of 60 patient instances. Test data comprises 30 positive
instances and 30 negative instances. This model could identify
27/30 positive and 26/30 negative instances correctly.

Accuracy is used to evaluate the overall classification relevance
as it provides a wider scope of comparison with other works. Table
1 depicts comparison of the proposed model with three other lung
cancer classification model designs. It outperforms other
techniques achieving an accuracy of 88.3%, owing to improved
segmentation and feature extraction phases surpassing [43–46]
models.

However, accuracy is not a very conclusive metric. In some
cases where the dataset is imbalanced, a model which labels every
single person as non-cancerous might result in a high accuracy. Out

of the two classes which need to be identified, one category has an
overwhelming majority over the other.

Logloss is a metric which measures the performance of a
classification model used by Kaggle [47]. It takes variation from
actual label as the degree of uncertainity giving a more nuanced
view of model performance. The objective of models is to
minimise this value. Fig. 10 gives logloss curve for XGBoost
model. The minimum logloss achieved is 0.32.

Receiver operating characteristic (ROC) is one of the most
trusted and widely used metric to assess the accuracy of
radiological imaging systems. ROC calculated the confidence level
that an abnormality is present or not. The area under the ROC
curve (AUC) is used as a performance metric. Higher the AUC,
better the model. The proposed architecture achieves an AUC of
0.883 excelling over [43, 48–50]. The comparison of AUC is
shown in Fig. 11. In order to give a conclusive picture of the
model, five different metrics are calculated, as shown in Table 2. 
Here, TP stands for true positive, TN for true negative, FP for false
positive and FN for false negative.

Sensitivity, also commonly known as true positive rate, is the
ratio of true positive cases to all the classified positive cases.
Specificity, or true negative rate, is the ratio of true negative
instances to total negative labelled instances. The proposed
framework achieves a sensitivity and specificity of 0.8710 and
0.8966, respectively. While accuracy is related to how close an
answer is to the actual value, precision relates the closeness of the
two measurements to each other. False negative rate is also used to
evaluate the performance. It is the proportion of positives which
yield negative test outcomes. Another widely used metric that
utilises both precision and recall is F1 score. It is the harmonic
mean of precision and recall. The proposed CAD model achieves a

Fig. 7  Comparion of Dice coefficient for the segmentation task. Ground
truth for evaluation of Dice coefficient is provided in dataset itself

 

Fig. 8  Comparion of number of morphological features that have been
used in previous lung cancer classification model designs

 

Fig. 9  Confusion matrix
 

Table 1 Accuracy table
Model Accuracy Enhanced technique
Alakwaa et al. [43] 0.866 segmentation
Qin et al. [44] 0.730 pre-processing
Sóñora-Mengana et al. [45] 0.760 segmentation
Bhatia et al. [46] 0.840 classification
proposed model 0.883 segmentation, classify

 

Fig. 10  Logloss values for the proposed model on test data. XGBoost was
trained to optimise the logloss. This curve shows how the logloss varies
with number of iterations achieving a minimum value of 0.3247
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precision of 0.9000. Calculated F1 score is 0.8852, a significant
improvement over 0.740 achieved by Kuan et al. [31]. A simple
two-layer three-node neural network with threshold activation
functions is NP-complete [51]. A general expression for the overall
time complexity of all convolutional layers in a CNN was
presented by He and Sun [52] and demonstrated by Sinha and
Ajmera [53]. CNNs are composed of a lot of shared weights and
biases, which increase the computational complexity drastically.
But despite this high computational complexity, there are several
modifications that enable faster and efficient learning like ReLU
activation functions and regularisation. The running time depends
heavily on the hardware configuration and the platform used for
training the model. The space complexity is dependent on the size
of the input image and the batch size, which is used for training for
a particular model. All of the experiments in this paper are
performed on Google Colab, on a Tesla K-80 GPU with 12 GB of
VG-RAM. The code is written in python3 based on PyTorch.

7 Conclusion
This paper presents the Deep3DSCan framework for lung nodule
segmentation and cancer classification. Classification of a patient
as cancerous or does not involve the segmentation phase. We
employ a skip network-based architecture that uses volumetric
segmentation. Segmentation achieves a Dice coefficient of 0.958.
The proposed framework achieves significantly better results than
the existing deep learning model design. Deep learning techniques
being domain agnostic and having limited interpretability, hamper
the capability in diagnostic assistance. The proposed framework
fuses handcrafted features to features extracted from the ResNet
model, providing a better enhancement than each class of feature
generation designs. Through results we showed the performance
gains of the proposed model compared to the traditional schemes
used.
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