
A Machine Learning Approach for Traffic Flow
Provisioning in Software Defined Networks

Subham Kumar
Department of Computer Science

BITS Pilani
Pilani, India

h20180123@pilani.bits-pilani.ac.in

Gaurang Bansal
Department of Computer Science

BITS Pilani)
Pilani, India

h20180123@pilani.bits-pilani.ac.in

Virendra Singh Shekhawat
Department of Computer Science

BITS Pilani
Pilani, India

vsshekhawat@pilani.bits-pilani.ac.in

Abstract—With the recent surge of machine learning and
artificial intelligence, many research groups are applying these
techniques to control, manage, and operate networks. Soft-
ware Defined Networks (SDN) transform the distributed and
hardware-centric legacy network into an integrated and dynamic
network that provides a comprehensive solution for managing the
network efficiently and effectively. The network-wide knowledge
provided by SDN can be leveraged for efficient traffic routing
in the network. In this work, we explore and illustrate the
applicability of machine learning algorithms for selecting the least
congested route for routing traffic in a SDN enabled network.
The proposed method of route selection provides a list of possible
routes based on the network statistics provided by the SDN
controller dynamically. The proposed method is implemented and
tested in Mininet using Ryu controller.

Index Terms—Traffic Engineering, Machine Learning, Soft-
ware Defined Networking, Clustering

I. INTRODUCTION

Traditional networks are inherently distributed in nature,
and they rely on hop-based routing techniques to route and
forward packets. The least hop path between any two nodes
is chosen, and then all traffic is routed along that path.
This technique of sending traffic worked fine when networks
were designed initially, but as they grew in size and usage,
problems like congestion started popping up, choking the links
and rendering communication ineffective. Routing protocols
like hop-based methods do not incorporate the present level
of congestion in the network into their route calculations
due to large control overhead incurred for sharing updated
network states in distributed manner. However, this often
leads to inefficient utilization of network resources, as packets
can be routed through a slightly longer path which is less
congested compared to the congested least hops path, leading
to better traffic load distribution in the network. Software
Defined Networking (SDN) is a new networking paradigm
which enables centralized control over the network infrastruc-
ture by separating control and data planes [1]. It provides
a programmable interface between network devices and the
centralized controller. The centralized controller provides a
global view of the entire network that gives more flexibility
for controlling and operating the network to meet the desired
Quality of Service (QoS) requirement efficiently. Such logical
global view of the network is missing in traditional networks.

Machine Learning is being used extensively in a variety
of applications and fields today. Supervised machine learning
algorithms are used to predict future events using labeled ex-
amples. By analyzing a known training dataset, the algorithm
infers an appropriate function to provide relevant results. In
contrast, unsupervised machine learning algorithms are used
when there is no prior information available to train the algo-
rithm [2]. It tries to draw inferences from the dataset in order
to describe hidden similarities and characteristics present in the
unlabeled data. Semi-supervised machine learning algorithms
use a combination of both labeled and unlabeled data for
training. This ensemble can be used for considerable improve-
ment in learning accuracy. Reinforcement machine learning
algorithms generate actions and modify them corresponding
to penalties or rewards. This method allows machines and
software agents to automatically determine the ideal behavior
within a specific context in order to maximize its performance.

Machine learning techniques are hard to apply and deploy
in traditional networks to control and operate networks due
to their distributed and dumb nature. The SDN brings us new
opportunities to incorporate intelligence inside the networks
[3]. The capabilities of SDN (for example centralized control,
global view of the network, software-based traffic control amp;
analysis, and dynamic traffic routing) make it easier to apply
machine learning techniques. This paper proposes a machine
learning-based congestion aware traffic routing method in the
networks.

II. PREVIOUS WORK AND OVERVIEW

As networks are growing, operation and management of
such complex and variegated networks is becoming increas-
ingly complicated for network administrators. There is a lot
of research effort being put to find solutions that can help in
better management and agility of networks without impacting
its performance. Various approaches have been attempted to
address this issue, like distributed algorithms in self healing
[4]. Contemporary research can be categorized primarily into
two categories for a better overview :

1) Feature Traffic Forecasting (FTF)
2) Time Traffic Forecasting (TTF)
Feature Traffic Forecasting (FTF) is based on understanding

the network characteristics and extracting certain parameters



of the network such as total flow present in the network and
how users are correlated to each other. FTF deploys supervised
and unsupervised learning with relatively high accuracies,
deploying Artificial Neural Networks [5] and in Intrusion
Detection Systems [6].

Time Traffic Forecasting utilizes the network topology and
the amount data flowing in the network as shown in [7]
and [8].Time Traffic Forecasting (TTF) aims to construct a
model that can draw accurate correlation between future traffic
volume and previously observed traffic volumes. TTF models
can be categorised into:

1) Statistical Analysis model (SAM)
2) Network Analytics Supervised Learning (NASL)
NASL is designed to process traffic patterns based on what

it has learnt from the dataset it was trained on. However
this has a limitation, which is explained as follows. Each
network is different, the flows and the amount of data that
is flowing is different. So what works well for one network
may be result in performance degradation for another. So
researchers are working on SAM where the model learns
the network characteristics while being deployed in real time
without adding to network latency.

The major drawback of machine learning is that these
techniques cannot be deployed in real time easily. On one
hand machine learning provides high accuracies on analysis
of network traffic, they have been deployed extensively in
Intrusion detection systems as shown by [9]. There have been
some applications in circuit switched networks as well[10].
However this is at expense of computational effort and time,
as illustrated by [11] . The goal is to design a real time system
which may come at the expense of a slight loss in accuracy.
For instance [12] have tried logistic regression, but this does
not have any mechanism to effectively incorporate new states,
and the running time becomes significant when the network
size increases.

An alternative to conventional machine learning approaches
is reinforcement learning. Reinforcement learning has been
applied to networking for a long time, [13] have applied
intelligent learning modules inside routers, to try and incor-
porate dynamic parameters like congestion into deciding the
flow of packets, however they could achieve limited success
because the experimental runs involved are too costly, and
the algorithm employs a greedy approach, resulting in the
selection of suboptimal paths more frequently as congestion
increases, especially in larger networks. Deep reinforcement
learning can help mitigate these issues to a certain extent
[14]. However experiments conducted by [15] shows how the
computationally intensive nature of these algorithms proves to
be a roadblock in effective deployment of such techniques in
the domain of networking.

In Software defined Networking (SDN), a centralized con-
troller decides the flow of data through the network. A cen-
tralized controller enables the availability of information about
the whole network at one place. This centralized controller
collects various statistics as soon as the state of the network
changes. Each of the switches sends a control packet to the

controller as soon as it detects a change in the link attributes.
This information is aggregated over all the link values and
assimilated by the controller. Available bandwidth (dynamic,
at a particular instant) is one of the most important metrics
for effective dynamic traffic engineering, especially when we
consider factors like congestion [16].

III. PROPOSED METHODOLOGY

This paper proposes a machine learning based path selection
approach for traffic flow provisioning in software defined
networks. The proposed approach comprises of two modules,
training and deployment. The training module learns from the
paths provisioned in the recent past for the given state of the
network. In the deployment module, the controller queries the
module at specified interval of time for the best possible path
based on the current network state and then provisions the
new paths based on the information received. The machine
learning module adapts to the network topology and makes
intelligent decisions for the traffic flows routing. The traffic
ows are routed in the network considering the congestion and
traffic pattern history in the network. The state of the network
is assimilated at the SDN controller. The controller generates
a bandwidth matrix for each of the links after calculating the
available bandwidth. The available bandwidth at each of the
links in the network is provided as input to the deployment
module.

We have proposed two methods for selecting best possible
path to route the traffic flow, in the network. One method is
based on K-means clustering and other uses a novel applica-
tion of the Vector Space Model with cosine similarity.

K-Means clusters a given dataset into K clusters, based on
euclidean distance. In this work it is used for clustering similar
states of the network based on euclidean distance between
them. The network state is represented through weights which
are assigned to each of the links. In the training module, every
state of the network along with its corresponding best path
is read, and appropriately put into existing clusters, or the
clusters are rearranged to form a new set of clusters. The best
paths corresponding to each state are provided by the network
administrator, during the training module. At the end of the
training module, we will have a set of K clusters, with each
cluster corresponding to similar network states, that is network
states which give similar best paths.

Cosine similarity has been used extensively in the domains
of Information Retrieval and Data Mining[17]. It finds the
similarity between two points based on the angle between
the two vectors which connect the origin to those points
respectively. The network states are clustered in a similar
fashion as in K-Means, but using cosine similarity as the
clustering parameter instead of Euclidean distance. Network
states which are similar will be aligned with each other to a
good degree, resulting in a high value of cosine similarity
compared to a state which is quite different (considerable
difference in the best paths).

The hop-based routing algorithm (e.g., Dijkstra’s algorithm)
used in conventional networks (non-SDN) calculates the least



Fig. 1: Test network topology

cost path between source and destination nodes, where cost
for each of the links in the network is defined as one. The
hop-based routing does not account for any dynamic parame-
ters like link congestion for traffic routing. In conventional
networks, traffic routing based on such dynamic network
parameters creates a huge amount of control traffic. As a result
the hop-based routing method cannot avoid congested links
from the path selected for a traffic flow, which leads to poor
performance.

The main advantage of K-Means and cosine similarity is
the finite and constant number of comparisons which have
to be made to find the best path. Even though there can be
a very large number of network states, because they have
been clustered based on the best paths, the search space for
comparisons is dramatically reduced, and this enables us to use
dynamic parameters like congestion occurring in the network
as the link weights, which can change frequently. A change
in just one of the links will cause the Djikstra algorithm to be
run for the entire network again, but in when these machine
learning models are used, a few comparisons have to be made,
which is much more faster.

Unsupervised techniques have an advantage in this applica-
tion that they can incorporate information which they have not
seen before as well into their learning. For example if there is
a network state which is very different from the network states
whose information has been incorporated into the model in the
training module, this state and the corresponding best path can
be added and the clusters adjusted appropriately, which would

not have been possible in conventional supervised approaches.
Table I provides the complexity of different Machine Learn-

ing algorithms, where m is the number of training examples,
which is analogous to the number of network states utilized
in the training module for our work and n is the size of input.
The parameter c refers to the number of output classes, and
for K-Means, it represents the number of clusters.

Even though some algorithms like neural networks can give
better results, the computational costs and running time are
too high for the controller to be able to reroute the packets
via an alternate path. The difference becomes starker when
the network topology increases in size. Since time is one of
the most important factors which has to be minimized, we
used K-Means and similar clustering algorithms which have
the least time complexity for classification of network states.

TABLE I: Complexity of Different Machine Learning Algo-
rithms

Algorithm Complexity
Logistic Regression O(mn2 + n3)
PCA O(mn2 + n3)
SVM O(m2n)
EM O(mn2 + n3)
K-Means O(mnc)
Neural Networks O(mn + nc)

Cosine similarity performs better than K-Means in certain
cases where cosine similarity proves to be a better metric
than euclidean distance. An example is illustrated in Figure



2. (a,b,c) refers to the weights of link a,b and c respectively
as shown.

Fig. 2: Simple network layout

Let’s say that we have 2 clusters in the training module, with
centres (4,4,4) and (3,1,1) respectively. The best path between
the two host machines in the first cluster is a, while for the
second cluster is bc. A test path, (2,2,2) has to be mapped to
either of these them in the deployment module. (2,2,2) should
be mapped to (4,4,4) because it is similar in nature to that
state, giving similar best paths. However Euclidean Distance
will return (3,1,1) as the closest, rather than (4,4,4). But on
the other hand cosine similarity will give the highest value
for (4,4,4) rather than (3,1,1) and will return (4,4,4) as the
result, this is illustrated in Figure 3. Hence cosine similarity
will perform better in such scenarios compared to K-Means.

Fig. 3: Cosine Similarity vs K-Means

IV. EXPERIMENTS AND RESULTS

The test network topology is shown in Figure 1. This
was created in MiniEdit, which is a GUI running on top of
MiniNet. The Ryu controller has been utilised for this experi-
ment.Each of the links are given weights which are calculated
as the ratio of Available Bandwidth to Total Bandwidth on
that particular link. We analyze communication taking place
between host machines H1 and H4. Network traffic will be
simulated by generating communication traffic using other
hosts. Traffic is generated between the other hosts in a varying
fashion, such that the links on all possible paths between H1
and H4 have varying weights at different instances of time.

The statistics (state) of the network is assimilated at the
SDN controller every 0.1 seconds.This time frame can also
be adjusted as per the state of the network, if there are signs
of congestion then this duration can be shortened to adapt
effectively to the state of the network. At other times it can

be kept at a suitable steady interval, this varies according to
the network topology and size. After calculating the available
bandwidth, the controller generates a bandwidth matrix. This
matrix contains information about each of the links and the
available bandwidths in each of them. This is given as input to
the machine learning module. The module returns the best path
to the controller, which translates and pushes the information
down into the switches.

In the first run we clustered the paths using K-Means into
5 clusters, based on the common links between them. Various
experiments were carried out with different values of K to find
the best value. Then the input was compared to the respective
centroids of each of the clusters, which in this case are similar
paths. Then the comparison is done with the paths present
within that cluster, again giving us a list of possible paths,
rankwise. This approach is much more efficient compared to
an approach where a comparison is made between the test path
and all possible paths . In this case, we will be comparing a
small subset of the search space, just 5% (1 cluster out of 5)
of all paths which have been stored.

In the second run, we construct a n-dimensional space where
each dimension represents a link in the network topology, and
this way all the possible paths are marked. Then the input is
also plotted and compared to them. The difference is that here
we are computing cosine similarity, which is a better parameter
as compared to Euclidean distance which does not always give
a proper estimate, especially if the input is a multiplied factor
of one of the paths.

Fig. 4: Comparison of RTT for various packets taken by K-
Means, Cosine Similarity and the hop-based routing algorithm

The Round Trip Time (RTT) measurement of the traffic
flows for three different path selection techniques, i.e., K-
means, Cosine Similarity, and Hop based routing is shown
in Figure 4. The RTT measurements have been taken for the
transmission of a specific packet number at different time
intervals. It is evident from the plot that overall the paths
selected by the K-means and Cosine similarity techniques
provides lower RTT paths as compared to conventional Hop
based method.

However, initially (number of packets transmitted are
around 100) Cosine similarity gives higher RTT paths as



compared to other two path selection methods. But as time
progresses and more number of packets get transmitted, Cosine
similarity method selects better paths in terms of RTT as
compared to K-means as well as hop based routing method.
With the increase in number of packets new paths are added
into the repository due to quick changes into the network
congestion state. The Cosine similarity and K-means methods
are taking into account the path repository and selects a path
based on the current network congestion state. Hop based
method does not incorporate the network congestion state
changes into the path selection process. Therefore, the paths
selected by hop based method are inferior in terms of RTT
when network is congested.

Further increase in the network congestion due to more
traffic leads to increase in the RTT values for all of the
three paths selection methods, which can be visualized in the
Figure 4 for RTT measurements taken for 10000th packet.
This increase observed in RTT for all path selection methods
is due to the network resource limitations, which means
network resources are insufficient to handle the amount of
traffic generated in the network. Cosine Similarity provides
lower RTT values compared to K- Means, because of reasons
explained using an example topology shown in Figure 2.

Fig. 5: Speedup of various stated algorithms compared to
conventional routing methods

The speedup comparison between K-means and Cosine
similarity with hop based has been shown in the Figure 5.
The results confirms the superiority of K-means over Cosine
similarity with better speedup ratio.

The graph plotted in Figure 6 shows the performance
comparison of K-Means and Cosine Similarity to the best
possible (optimal or ground truth) solution in terms of the
average RTT, minimum RTT, maximum RTT and the mean
deviation of the RTT. When we consider network as a whole
for a considerable amount of time, then it can be seen that
both methods select best possible paths or very close to that.
However, Cosine similarity gives us a higher accuracy at the
cost of a little less speedup as compared to K-Means.

Fig. 6: Comparison of K-Means and Cosine Similarity to the
ground truth (optimal solution)

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a machine learning model
for congestion aware traffic routing in software defined net-
works. The proposed model learns updated network statistics
at different intervals of time and incorporates that knowledge
for selecting least congested path for traffic flow routing.
The least congested path is selected from a list of probable
paths by using K-Means and Cosine Similarity methods. The
experimental results show that paths selected by using Cosine
Similarity are better in terms of RTT value as compared to K-
Means. However, K-Means outperforms Cosine Similarity for
the speedup ratio, which is calculated with respect to conven-
tional hop-based routing method. In future, this model can be
extended to apply for other traffic management functionalities
like load balancing, traffic load distribution and multi-path
routing.

REFERENCES

[1] D. Kreutz, F. Ramos, P. Verissimo, C. E. Rothen-
berg, S. Azodolmolky, and S. Uhlig, “Software-defined
networking: A comprehensive survey,” arXiv preprint
arXiv:1406.0440, 2014.

[2] N. Grira, M. Crucianu, and N. Boujemaa, “Unsupervised
and semi-supervised clustering: a brief survey,” A review
of machine learning techniques for processing multime-
dia content, vol. 1, pp. 9–16, 2004.

[3] T. Abar, A. B. Letaifa, and S. El Asmi, “Machine
learning based qoe prediction in sdn networks,” in 2017
13th International Wireless Communications and Mobile
Computing Conference (IWCMC). IEEE, 2017, pp.
1395–1400.

[4] A. Trehan, “Algorithms for self-healing networks,”
CoRR, vol. abs/1305.4675, 2013. [Online]. Available:
http://arxiv.org/abs/1305.4675

[5] Y. Li, H. Liu, W. Yang, D. Hu, and W. Xu, “Inter-data-
center network traffic prediction with elephant flows,” in
2016 IEEE/IFIP Network Operations and Management



Symposium, NOMS 2016, Istanbul, Turkey, April 25-
29, 2016, 2016, pp. 206–213. [Online]. Available:
https://doi.org/10.1109/NOMS.2016.7502814

[6] A. L. Buczak and E. Guven, “A survey
of data mining and machine learning methods
for cyber security intrusion detection,” IEEE
Communications Surveys and Tutorials, vol. 18,
no. 2, pp. 1153–1176, 2016. [Online]. Available:
https://doi.org/10.1109/COMST.2015.2494502

[7] H. Derbel, N. Agoulmine, and M. Salaün,
“ANEMA: autonomic network management architecture
to support self-configuration and self-optimization
in IP networks,” Computer Networks, vol. 53,
no. 3, pp. 418–430, 2009. [Online]. Available:
https://doi.org/10.1016/j.comnet.2008.10.022

[8] A. J. Oliner, A. Ganapathi, and W. Xu, “Advances
and challenges in log analysis,” Commun. ACM,
vol. 55, no. 2, pp. 55–61, 2012. [Online]. Available:
https://doi.org/10.1145/2076450.2076466

[9] R. Sommer and V. Paxson, “Outside the closed world: On
using machine learning for network intrusion detection,”
in 2010 IEEE symposium on security and privacy. IEEE,
2010, pp. 305–316.

[10] L. Li, Y. Zhang, W. Chen, S. K. Bose, M. Zukerman,
and G. Shen, “Naı̈ve bayes classifier-assisted least loaded
routing for circuit-switched networks,” IEEE Access,
vol. 7, pp. 11 854–11 867, 2019.

[11] Y. Zuo, Y. Wu, G. Min, and L. Cui, “Learning-based
network path planning for traffic engineering,” Future
Generation Computer Systems, vol. 92, pp. 59–67, 2019.

[12] S. Troia, A. Rodriguez, I. Martı́n, J. A. Hernández,
O. G. De Dios, R. Alvizu, F. Musumeci, and G. Maier,
“Machine-learning-assisted routing in sdn-based optical
networks,” in 2018 European Conference on Optical
Communication (ECOC). IEEE, 2018, pp. 1–3.

[13] J. A. Boyan and M. L. Littman, “Packet routing in dy-
namically changing networks: A reinforcement learning
approach,” in Advances in neural information processing
systems, 1994, pp. 671–678.

[14] G. Stampa, M. Arias, D. Sanchez-Charles, V. Muntés-
Mulero, and A. Cabellos, “A deep-reinforcement learning
approach for software-defined networking routing opti-
mization,” arXiv preprint arXiv:1709.07080, 2017.

[15] J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, C. Wang,
and Y. Liu, “A survey of machine learning techniques
applied to software defined networking (sdn): Research
issues and challenges,” IEEE Communications Surveys &
Tutorials, vol. 21, no. 1, pp. 393–430, 2018.

[16] R. Jain, “Congestion control in computer networks:
Trends and issues,” CoRR, vol. cs.NI/9809091, 1998.
[Online]. Available: http://arxiv.org/abs/cs.NI/9809091

[17] T. Korenius, J. Laurikkala, and M. Juhola, “On principal
component analysis, cosine and euclidean measures in
information retrieval,” Information Sciences, vol. 177,
no. 22, pp. 4893–4905, 2007.


