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Abstract—Unmanned Aerial Vehicles, popularly known as
UAVs, have been used in many applications in the recent
past. UAV’s have also been recently used to provide Security
as a Service (SECaaS). SECaaS involves technical solutions
like anti-virus and anti-spam software, firewalls, using secure
operating systems, etc. UAV’s are resource-constrained entities,
and thus, they avail the computational facilities of the Base
Station (BS) to serve the users in their range. At times, several
UAVs cooperatively come together to serve a given region, and
such a group of UAVs is called a swarm of UAVs. Generally, a
group/swarm of UAVs connect themselves to the base station
through cluster head UAVs, which are intermediary nodes. In
real-world scenarios, many stakeholders come together to form
a UAV swarm configuration providing services to users. Each
stakeholder wants to maximize gains. This work proposes a
pricing Stackelberg game among the UAVs, cluster heads, and
the BS by formulating their behavioral utilities. Using particle
swarm optimization on each entity’s utility functions, we create
an optimal price strategy to maximize profit.

Index Terms—UAVs, Security, Service provider, Stackelberg,
Game Theory.

[. INTRODUCTION

With a wide spectrum of users in a given geographic
area, generally, the security requirements for each user vary.
Some users may require more security services from the ser-
vice provider, while others may opt for the baseline default
security. For example, a user running financial services is
likely to need more security measures than a user providing
basic web hosting. Security provisioning using UAVs is an
emerging area of exploration for service providers where
service providers use UAVs to provide resources to their
customers to secure their data or perform verification
tasks. Security services often include authentication, anti-
virus, anti-malware/spyware, intrusion detection, penetra-
tion testing, security event management, etc [1} [2]. The core
infrastructure for providing security in these models is built
at the base station, and the UAV provides wide user access
and reachability.

Security provisioning can be categorized into different
service models such as Software as a Service (SaaS), Plat-
form as a Service (PaaS), and Infrastructure as a Service
(TaaS). Recently, there has been a paradigm shift from
laaS to SaaS, with companies like Amazon, Google, and
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Microsoft putting efforts to provide security as a SaaS for
users. Security as a service is commonly referred to as
SECaaS [3]. SECaaS offers security services to end-users
based on the subscription model, which can enable cost
reduction, improve the quality of existing operations and
provide rapid service [4}, [5].

UAVs, being computationally limited, are not themselves
the end resource providers. Instead, they act as inter-
mediary resource providers, where the service resources
are hosted at the base station. UAVs act as the buyer to
the base station and seller to users [6]. At times, several
UAVs cooperatively come together to serve a given region,
and such a group of UAVs is called a swarm of UAVs.
Generally, these swarm of UAVs connect themselves to
the base station through cluster head UAVs, which act as
intermediary nodes. These intermediary nodes save most
of the energy consumption of UAVs that goes wasted
in long-range communication with base station [7, [8].
They also improve the performance of terrestrial wireless
communications. These cluster heads also allow a more
significant number of dedicated UAVs and assist in planning
trajectories to cover a wider geographic area. Additionally,
these intermediary UAVs can assist transmission of base
communication devices by ferrying resources between the
base station and UAVs [9) [10].

There is a fundamental challenge in managing the UAV-
based Security as a service solution to identify who manages
the resources and UAV networks [IT} 1Z]. Generally, these
networks of UAVs, cluster heads, and base stations belong to
different stakeholders. Different companies come together
to participate in service provisioning and gain profit [13HI5].
Different service providers like Microsoft, Google, Amazon,
etc., form the core resource provider (base station). The
stakeholders of participating entities (UAVs, cluster heads,
and base stations) try to find an optimal strategy to maxi-
mize their gains. UAVs try to maximize the profit by selling
to end-users and buy at a lower price from cluster heads.
Similarly, the cluster head maximizes the profit from the
difference in the amount it charges from UAVs, and it has
to pay to the base station. This paper addresses these issues
by formulating a buyer-seller model for Security as a Service
between the base station, the cluster heads, and the UAVs
(as shown in Fig. 1).

The major contributions of this manuscript are high-
lighted as follows:

1) We formulate a buyer-seller model between the base

station, the cluster heads, and the UAVs for SECaaS
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Fig. 1: Two stage buyer seller model

provisioning using UAVs.

2) We propose a Stackelberg game to find an optimal
solution for price and demand distribution that maxi-
mizes the profit of all the participating entities

3) The paper does not make any assumptions on the be-
havior of entities in terms of utility and accommodates
different entities’ different profit thresholds.

4) We also show the impact of pricing strategy/profit
gains as a function of various network parameters.

5) This paper presents the first work on the pricing-
based game-theoretic application for hierarchical UAV
networks.

The organization of the paper is as follows. Section II
discusses the related works existing in the literature. Section
III presents the system model, and the Stackelberg game
formulation is described in Section IV. Section V optimizes
entities’ utility functions and evaluates the solution using
particle swarm optimization. Section VI discusses the simu-
lation and results. The conclusion of the paper is presented
in Section VII.

II. RELATED WORKS

UAVs are becoming an alternative to traditional edge or
cloud services as they are more accessible to users and can
accommodate moving users [I6]. Security as a Service as a
whole is emerging as one of the most important element
of "software as a service" paradigm [I7]. Many works such
as [18H22] have been proposed to find viable and optimal
solutions for efficient provisioning of services like anti-virus
and anti-spam software, firewalls, using secure operating
systems, etc.

In 2019, Shakeri et al., investigated the open chal-
lenges for future research for BS-UAV domain. One of

the major challenge involved development of an optimal
pricing model for UAV-Base station applications. Many UAV-
BS applications involve exchanges of resources like energy,
data, money etc. The authors argue that all the resources
come at a cost, and therefore, there is a need to maximize
the gains for the participating stakeholders. This has been
highlighted in also. In [25], the authors assert the need
of proper utility formulations for base stations and UAVs.
The need of utility function based on pricing incentive was
proposed in [26]. In here, authors considered three stake-
holders, the UAVs, the cluster heads or the intermediaries
and the base station.

Among the pricing models, a deep reinforcement learning
model is designed in [27], that uses profit utility function
for the entire network. The authors employed reinforcement
learning to find the optimal solution for utility optimisation.
However, their model has several drawbacks. Firstly, these
techniques take a much longer time to converge. Secondly,
the optimization was performed on the whole system where
entities are considered selfless, which is not valid in real-
world applications. Thirdly, the model does not take in
account utility functions for each individual entities. Other
proposed models include static and dynamic schemes.
Static schemes like that proposed in involve prices
being set at the beginning of the iteration of allocation
which is not practical in real-world scenarios. Many dy-
namic schemes such as [29] 30] were proposed to resolve
the issue with static schemes, which involve the allocation
of service based on auctioning priority optimization.

In [3I], Yan et al. proposed a pricing mechanism that
used a non-cooperative game formulation. The authors of
[32] proposed an iterative pricing algorithm for peer to peer
UAV-enabled wireless communication system. As the UAV
relay nodes have no incentive to provide service, the pricing
mechanism becomes a necessary method to encourage
them to participate in communications to achieve more
payments [31} [33]. The pricing mechanisms can maximize
the revenue, enhance social welfare, and ensure user fair-
ness [34]. Although there are many models, there is no
concrete optimization formulation for pricing strategy in
a hierarchical network of swarms.

This paper proposes a Stackelberg game formulation and
uses particle swarm optimization to achieve the best solu-
tion. We mathematically optimize the utility function for
different price values and show optimum pricing strategy
and resource allocation.

III. SYSTEM MODEL

Security as a service is an attractive option to leverage
security services to end-user based on the subscription
model. The subscription model uses service demand or the
number of self-defense goods as the measure of service.
‘Self-defense goods’ [35] implies a cluster head’s efforts
to secure their system through technical solutions such
as anti-virus, anti-spam software, firewalls, using secure
operating systems, etc. This metric has been widely used in
existing literature [37] to quantify security resources. The
other name used in [36) 37| for self-defense goods is Cyber
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Insurance. Cyber-insurance can be seen as a risk manage-
ment technique via which network end-users transfer their
risks to an insurance company (e.g., base station or cloud
provider) in return for a fee, i.e., the insurance premium.

This paper presents a hierarchical network architecture
between the UAVs, cluster heads (CHs), and base stations
(Fig. 2). A group of UAVs providing service to a given region
is referred to as a cluster, and each cluster is connected
to a base station using a cluster head (CH). UAVs receive
services from their cluster head depending on the amount
that a UAV pays to its CH. Whereas CHs act as resource
buyers for base stations.

The base station is connected to M clusters in our model,
where a cluster head heads each cluster. Each cluster has
a different number of UAVs denotes by N;, where the
subscript i refers to cluster number. Any UAV can be
uniquely identified in the system using (i,j) (cluster it
belongs to and UAV number in the cluster). The demand
for service from a UAV is denoted by rj;.

The pricing policy and behavioral utility model consider
the amount of service received by the entity and the cost it
has to pay. p; is the price demanded by a CH from UAVs in
its cluster, and P denotes the price charged by a BS from a
CH based on the aggregate service it demands. This paper
provides a two-stage buyer-seller Stackelberg game model
that proposes an optimal solution for entities using particle
swarm optimization.

IV. NOTATIONS

The notations used in this paper are described in Table
L

V. GAME-THEORETIC FORMULATION

In this section, we formulate the utility values of the
participating entities, namely the BSs, CHs, and UAVs. Also,

Notation Defination

UAV ; j™ UAV in i cluster

pi Price charged by i’ CH per service unit
Uuav; Utility of j™" UAV in i" cluster

K Price that UAV receives from the user
Iji Service demand of the UAV j;

U"“”UAV].. Minimum Utility Value for UAV j;

Ucn, Utility of i’ cluster head

Usgs Utility of base station

P Price charged by BS per service unit

R; Total resource requirement from the BS
n; Number of UAVs in i’" cluster

M Number of Clusters

Rmax Max. resource available to the BS

p?’IlAX Price threshold for UAVj;

IterMAX Max. Number of Iterations

GZZ“X Global Best Value at p~ in PSO iteration
KZ?‘” Particle Best Value at p  in PSO iteration
\ Velocity of particle in PSO

w Inertia weight constant in PSO

cl,c2 Exploratory constants in PSO

TABLE I: Notations

we formulate a two-stage Stackelberg game (between BS
and CH and between CH and UAV). The utility of an entity
is defined in terms of the net profit that the entity earns
(38} 139].

A. Utility of UAV

Our system model consists of many UAV connected to a
single CH and multiple CH connected to a BS. Recall that
for the j*" UAV in the i'" cluster, we denote the service



demand of the UAV as r;;. Existing literature [40] shows
that the utility of a device is well modeled as a logarithmic
function of the demand. This utility function has been
widely used in several scenarios, and its behavior has also
been modeled in [41]. The value of the utility increases by
a log of demand and decreases by the price paid p; to i’"
CH for each unit of service. Thus, the utility of UAV;; is
given by:

Uuav;; =Kdn(r;i)) - pi x 1ji. (1

where K is the proportionality constant or price that UAV
receives from the user for a particular gain In(rj;). K has
units similar to p;.

As discussed eatrlier, different stakeholders have different
gain benchmarks of profit [42], and thus each UAV has
a limit on the minimum utility to function U’”i”UAVji.
Different stakeholders have different expectations of return.
For example, large organizations like Google and Amazon
are more likely to invest in a significant revenue return than
startups or small-scale firms. Thus, there is a difference
in utility thresholds of different UAVs. Using the utility
threshold and above-stated equation for utility, we can
formulate abound on the price. This bound on price is
called the price threshold or the maximum price that a
UAV can pay. Any increase in price beyond this limit would
eventually decrease the UAV’s utility beyond the threshold,
and thus, it would be unwilling to participate.

Each UAV tries to choose the optimal value of rj; so as
to maximize its utility. The utility function of the UAV can
be given as:

max UUAVj,-; (2)

rjz

min
s.t. Uyav;; = U™ yav;-

B. Utility of Cluster Head

A cluster head generates its profit by selling the service
to UAVs in its cluster and incurs a loss for purchasing the
resources from the BS. Let the given instant be n;. P denotes
the price that the BS charges from CH for each unit of
service. In this scenario, we consider that the cluster head
offers the same price to all the UAVs in its cluster. So the
utility of CH for the i’ cluster can be formulated as:

n; n;
Ucn, = ) pirji—P Y rji. 3)
j=1 j=

n;
Note that '21 pirji denotes the total revenue earned by
j=
ni
the cluster head and P } rj; denotes the total expenses
=1
it had to pay. The CH ]can not choose the price the BS
demands. Also, it cannot decrease the demand for resources
to be lower than the UAV’s aggregate demand in the cluster.
So the utility of cluster head primarily becomes a function
of p;. A cluster head can find the optimal price that needs
to be charged from UAVs to maximize utility. Increasing
the price would increase the utility. However, as we have
discussed before, UAVs do not participate in-game if the

price is increased beyond a limit. The minimum utility of
the threshold is 0. Any negative utility results in the loss
of stakeholders, and such stakeholders would be unwilling
to participate. The objective function of the cluster head is
given as:

max UcH;, 4)
n;

R; = Z Tji.
j=1

where R; is the aggregate of the UAV’s total resource
requirement in the cluster.

C. Utility of base station

The base station is the resource center. All the infras-
tructure and resources for services are built at the base sta-
tion. Aggregated stakeholders or a single entity stakeholder
may build the base station. We restrict the complexity of
this problem to a single stakeholder resource station (e.g.,
Amazon-based cloud). The base station earns a profit by the
number of services that it sells. The price for each of the
services is set at P per unit of service. All the cluster heads
connected to a BS are charged the same price, P. Recall that
R; is the total resource requirement of i‘”* cluster head. Let
the total number of cluster heads connected to the base
station by M and n; be the number of UAVs connected to
the i’ cluster head. The total earning of the BS can then
be formulated as:

M
Ugs = Z PR;. (5)
i=1

To maximize the profit, the base station increases the
price P which it charges from the cluster heads. However,
the utility function is not a linear function with P. Increasing
the price would increase the BS’s utility. However, as dis-
cussed earlier, if the price is increased beyond a limit, UAVs
do not participate in-game. So the optimisation problem for

base station is:

max Usgs. (6)

M

s.t. Z R; < Rmax.
i=1

VI. UTILITY OPTIMISATION

In this section, we try to optimize all the utilities of
entities by formulating a Stackelberg game. The Stackel-
berg game uses the leader-follower model [43]. The leader
chooses a move, and then the followers follow. In the
proposed model, the base station is the leader, and UAVs or
CHs are followers. As the base station is a resource provider,
it has an incumbent monopoly of the market. So it decides
to choose its strategy. Based on the price values chosen
by the BS, CHS chooses their price, and UAVs set their
demands. In the Stackelberg game, the leader moves first,
and the followers follow sequentially [44]. The constraint
is that once the leader has made its move, it cannot undo



it - it is committed to that action. UAVs or CHs cannot
predict the BS’s pricing action. The outcome of this strategic
interaction is evaluated using the Nash equilibrium [45].
The Nash equilibrium is the current strategy policy that an
entity makes based on the previous course of actions in the
game. It can be proved that no entity can increase its utility
by choosing another strategy while keeping the strategies of
all other entities fixed.

A. Optimal Utility for UAVs

Since the utility of an UAV is convex function, we can can
find the optimal requirement for the j* UAV connected to
the i*" CH, by evaluating the partial derivative of the utility
function and equating to 0. We have:

OUuAVji _ .
ij =0:
Uuavji =Kdn(r;)) — pi x rj;. Q]
oUuavji K
AR pi. (8)
arj,' rji
Equatlng UAV’ - =0, we get he optimal service demand
for the UAV as
AL )
ri=—.
Ji pi

Also, the optimal utility at the optimal service demand
is:
N K
UUAle- ZK(IH——I). (10)

x L,

From (10), since UUAV;TI. o

decreases.

The maximum price per unit of service that on UAV can
pay is p?’IAX ‘Beyond this price value p , the utility of
the UAV will fall below the minimum. Hence the UAV will
not be interested in being a part of the game anymore. This

maximum price is given by:
Umi nUAVji ) }
—+1] ;.
K

B. Optimal Price Evaluation for CH

as p; increases, UUAV?,-

(1D

pji MAX Kexp{

Using the optimal service requirement of the UAVs, we
can formulate the best response strategy of the i’" CH as:

Ucy; = (12)

n; n;
Zpir;i_PZr;i
j=1 j=1
K
=n; (K -P —) .
pi
Here we replace r;; with the UAV’s optimal service
demand r*.‘l.. The value of Ucy; initially increases with
increasing p; for fixed value of P. However, when p; is
increased beyond the UAV’s price threshold, the UAV will
not participate in-game, as its utility reduces rapidly. Hence
a UAV will only participate when p; < leAX. Also, n; will
change only when p; is changed between threshold price

values for different UAVs. Any change of prince between the
threshold does not change the n; but increases the utility
monotonically. So the optimal value of price p; for CH
comes for one of the threshold values.

C. Optimal Price Evaluation for BS

The utility of the BS can be evaluated using the optimal
price of the i"" CH (p}) as:

M
Ugs = Z PR; (13)
ll\_/ll n;
=) PY rj; (14)
i=1 j=1
= % Pn-£.
i=1 ' P?

where R; is the aggregatlon of the service demand of the

individual UAVs (Z T l)
i=1

It can be observed from the model that the price P sets a
constraint on the pricing of cluster heads and thus on UAVs.
The base station’s utility increases for small P values, but
when P is increased beyond a certain threshold, the UAVs
start disconnecting. As discussed earlier, no entity partic-
ipates in-game if its utility decreases beyond a threshold.
So, as P is increased beyond a threshold, the revenue of the
BS starts decreasing. Since the relationship between P and
p; is not linear, the relationship between the utility and P is
not linear. Thus, many local maxima and minima (readers
can refer to Fig. 6 (a)). To find the optimal pricing of cluster
head (p;) based on B we use particle swarm optimization
(PSO).

Eberhart and Kennedy first proposed particle swarm opti-
mization (PSO) [46] in 1995. PSO algorithm uses an iterative
optimization technique, trying to improve the function gov-
erning the solution. PSO is a metaheuristic algorithm that
can quickly find the optimal value over an ample space and
does not make any assumptions regarding the problem. The
main advantage of PSO over other evolutionary techniques
is that it is not based on gradient descent. As a result, a
function that is not differentiable can also be optimized by
PSO. Inspired by birds and fishes’ swarms, the algorithm
uses candidates placed randomly in the search space. Each
candidate calculates the value of the function, which is
also called the fitness level. The optimization problem
aims to determine the optimum value where all candidates
converge to give a unique solution.

The next iteration’s candidate movement is guided by two
factors, their current optimum value and global maximum
values given by K”%* and Gg*“x respectively (shown in

Algorithm 1). Explopratory constants set the rate of change
of movement v and the inertia weight constant. The best
or the most optimal position in the entire space that is
discovered becomes the guide of the swarm’s movement
for the next iteration. This process is repeated again and
again over several iterations until all candidates converge.



Algorithm 1: Particle Swarm Optimisation Algorithm

Output: Point at which Optimum Function Value is
achieved

Notation:
F — Utility function of Base station
P — Initialize the particles randomly and assign
particles randomly to search space
p — Iterator for P
IterMAX — Max. Number of Iterations
GZZ‘“‘ — Global Best Value at p"
K%* — Particle Best Value at p’
old — current iteration
new < next iteration
v — velocity
w — Inertia Weight Constant
cl,c2 — Exploratory constants
while i < IterM™X do
for p°'@ in P do
Check if p°'? is in boundary conditions else
update p°'?
if Fo'4 > GZ&‘” then
Gmax — FZM
Kmax — Fold
p p
pu — pold
p‘ - pold
else
| flag — 1
if Fgld > KZ?‘” & flag == 1 then
Kmax — Fold
p 14
p& - pold
else
L flag — 2
phew —
w UOld+Cl * (K;?ax _pold) +C2 % (Gz?lax _pold)

pnew - pold + phew

Check if p"¢% is in boundary conditions
else

Algorithm 2 update p
i—1i+1;

pold - pnew

old

new

return p

However, it is not always guaranteed to find the optimal
solution because of PSO parameters’ choice. PSO may also
converge at local maxima or minima. Therefore, selecting
the suitable PSO parameters is the subject of research [47].
All the UAVs in the network have a minimum threshold
on the utility, which they need to maintain. Entities set
this threshold utility at the beginning of the game. A
price threshold is evaluated based on the utility threshold,
assuming that the demand for UAV’s service requirement is
constant. This price threshold denotes the maximum price
that a UAV can offer to a CH, after which its utility will go
beyond the threshold, and the UAV will likely not participate

Algorithm 2: Algorithm for checking Boundary Condi-
tion

Input : Takes an input p°/¢

Output: Outputs the value of p within bounds
(Bmin BmaX)
(Bmi",Bm“x)_ — Bounds of Search Space
if p°'4 <B™" then
pnew — pold + (Bmin _ pold)
if pe"? > B™%* then
L phew = pmax

if p°l4 > B™X then
pnew — pold + (pold — Bmax)
if p"®% <B™" then
L pnew — pmin
| return p"¥

in the game. Using PSO, the BS chooses a price and solves
the maximum pricing strategy for cluster heads, p;. These
price values can be mathematically proved to achieve the
maximum value of CH and UAV optimization function. Note
that there is no other better value of p; that increases the
system’s utility. The overview of the algorithm is presented
in Algorithm 1. To constrain particles to explore inside
the desired solution space throughout the optimization
process, we use our boundary conditions in particle swarm
optimization (PSO) methods, as shown in Algorithm 2. We
use limited boundary constraints in this paper to force
errant particles to be moved inside the allowed solution
space. It takes p°¢ as input and checks if it is between
bounds B™i", B4 If yes, p™°" is returned as p°. If
pold < Bmin, pnew — pold_’_(Bmin_pold)’ else if pnew > Bmax,
p"e? = B™4*, Similar check is done for other boundary
conditions.

VII. SIMULATION AND RESULTS

In this section, we present our simulation results to
evaluate the proposed system. The simulations have been
conducted using python on 1.8 GHz Dual-Core Intel Core
i5 with 8GB RAM. Table [II| gives the values of the variables
used for the simulations and particle swarm optimization.
We consider a scenario consisting of 4 cluster heads CH1,
CH2, CH3, and CH4 and the numbers of UAVs in the
respective clusters are 5, 3, 4, and 6. The threshold utility
or the maximum utility of UAV depends on the value of K,
and it is chosen randomly for simulations based on values
presented in Table
K has units of price, and is varied for values in the set [10$,
20$, 30$, 40%] . The price charged by the cluster head p;
varies from 0.1 to 1 $ per unit, while price charged by the
base station varies from 0.01 $ to 1$. Using the threshold
or maximum utility value, we evaluate maximum price or
threshold price for an UAV (presented in Table using:

MAX UmmUAVj,-
pji =Kexp+{ - T+1 .
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Fig. 3: Variation of Uyay

TABLE II: Values of Variable Used in Simulation

Variable Value
Number of Clusters 4

No. of Users in each cluster | 5,3,4,6
Range of K Values 10,20,30,40
Range of p; Values {0.1 - 1}
Range of Values for P {0.01 - 1}
RMAX 500
Number of PSO Particles 300
Number of PSO Iteration 30000
Particle Velocity Constant 0.1
Exploratory Constant 0.7
Acceleration Factor 1.5
Inertia Weight factor 0.01

TABLE III: Utility Threshold

K | Utility Threshold

10 | {30.8, 25.1, 23.4, 19.2, 18.4, 14.8}

20 | {83.1, 77.2, 63.5, 59.1, 45.8, 42.7}

30 | {139.9, 122.8, 99, 90.9, 81.1, 75.5}

40 | {1854, 163.7, 149.2, 140.1, 131.5, 118.3}

TABLE IV: Price Threshold

K | Price Threshold

10 | {0.16, 0.29, 0.35, 0.53, 0.58, 0.83}
20 | {0.11, 0.15, 0.30, 0.38, 0.74, 0.86}
30 | {0.104, 0.18, 0.40, 0.53, 0.73, 0.89}
40 | {0.14, 0.24, 0.35, 0.44, 0.54, 0.76}

Figure 3 shows the variation in the utility of an UAV with
K (Fig. 3 (a)) and p; (Fig. 3 (b)). The price set by the BS is
fixed at 0.05. In Fig. 3 (a), we vary the values of K in range
between 10 to 40 for 4 different p; values 0.1, 0.3, 0.7, 1.
The utility threshold for all the UAVs is chosen from Table
II. It can be observed from the figure that for a fixed p;,
the utility of UAV increases with K. This figure also depicts
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Fig. 4: Utility of CH; vs p;

the impact of K in the utility as p; is varied. On the other
hand, Fig. 3(b) shows the decrease in UAV utility with an
increase in the price that has to be paid by the UAV to the
CH.

The utility decreases when p; price charged is increased
by different cluster heads (shown in Fig. 4). The price
charged by the base station is fixed at 0.05$%. All the UAV
clusters are assumed to have the same K value set to 30.
The only difference among clusters is the number of UAVs
that are connected to a cluster. The first cluster head is
connected to 5 UAVs, second to 3 UAVs, third to 4 UAVs,
and fourth CH to 6 UAVs. The utility threshold and the
price threshold values are chosen from Table I and Table
11, respectively, for K = 30. From Fig. 4, we can see that the
utility of a CH increases initially with an increase in p; as
more revenue is earned. However, as p; increases beyond
the threshold values of prices of a UAV, the utility drops
abruptly. This is because, beyond the threshold value, the
UAV will incur a loss. So the UAV gets disconnected and
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does not participate anymore.

The utility rises again with increasing p; until a threshold
value of another UAV is achieved. The rise in utility is due
to higher revenue generated from remaining UAVs. After
that, it will again drop due to UAVs disconnecting. Thus,
the utility of BS as a function of P forms a zigzag pattern.
Finally, the utility falls to 0 when P are increased beyond
all devices’ maximum threshold. The figure also shows that
the cluster head’s utility depends upon the number of UAVs
connected to it. For example, the utility of cluster head 1
(CHI1)(pink line) is higher in comparison to cluster head
2 (CH2)(green line) as CH1 is connected to 5 UAVs in
comparison to 3 UAVs in CH2.

Figure 5 shows the variation in the cluster head utility
as a function of the price p; for different values of K and
P for cluster 3. 4 UAVs are connected to cluster head 3. In
Fig. 5 (a), we plot the utility of the CH vs. p; where K takes
values as [10, 20, 30, and 40]. P is fixed to 0.05. We observe
that for a given p;, the utility of cluster head increases with

the increasing value of K. The peaks in the corresponding
graph to the price thresholds, after which the utility drops
abruptly. Figure 5 (b) shows the variation in the utility of
cluster heads as a function of P for fixed K. K is varied from
[0.1, 0.3, 0.7, 1]. The figure shows that with an increase in
the value of B, the utility of cluster head decreases. The CH
has to pay more to the base station for the same amount of
service. Then, to maximize its utility, the CH has to increase
its price resulting in gradual disconnection of UAVs.
Figure 6 depicts the utility of the base station as a
function of the price charged by the BS from the CH. The
UAV distribution is 5, 3, 4, and 6 for 4 clusters, with K
set as 30 for all the UAVs. P is varied from 0.01 to 1.
Figure 6 (a) shows that as P increases, the utility of BS
increases due to higher gains from cluster heads. Gradually,
when P is increased beyond a certain threshold, some of
the connected UAVs start disconnecting. An increase in
P causes an increase in p; for UAVs in order for cluster
heads to maintain their utility. As UAVs disconnect, there



is a loss of demand and revenue for CH and BS. Thus,
the plot between the utility of BS and P shows a jagged
pattern. Figure 6 (b) shows the disconnection of UAVs with
an increase in P. For every B and we evaluate the optimal
p; using PSO.

VIII. CONCLUSION

This paper presents a two-stage buyer-seller model for
security as a service provisioning in UAV swarms. The UAV
swarms model consists of multiple UAVs buying security
services from the base station via cluster heads. Cluster
heads act as middlemen or intermediaries between the
transactions of UAVs and the BS. Each entity is heteroge-
neous and regarded as selfish. All participating devices try
to maximize their gain by maximizing their utility functions.
The buyer-seller model is formulated in the Stackelberg
game, where the optimal pricing and resource allocation are
calculated based on particle swarm optimization. Further,
in our simulation study, we show the impact of different
parameters on the optimal allocation strategy.
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